Crops ›› 2024, Vol. 40 ›› Issue (6): 126-131.doi: 10.16035/j.issn.1001-7283.2024.06.017

Previous Articles     Next Articles

Effects of Soil Amendments on Soil Characteristics and Rice Growth in Cold Waterlogged Paddy Field

Wang Benfu1(), Yu Zhenyuan2, Song Pingyuan2, Zhang Zuolin1, Zhang Zhisheng1, Li Yang1, Su Zhangfeng3, Zheng Zhongchun4, Cheng Jianping1()   

  1. 1Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement / Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Wuhan 430064, Hubei, China
    2College of Agronomy, Yangtze University, Jingzhou 434025, Hubei, China
    3Agricultural Technology Promotion Center of Qianjiang, Qianjiang 433100, Hubei, China
    4Agriculture and Rural Bureau of Qianjiang, Qianjiang 433100, Hubei, China
  • Received:2024-01-04 Revised:2024-04-22 Online:2024-12-15 Published:2024-12-05

Abstract:

The characteristics of cold waterlogged paddy field were poor soil ventilation and permeability, strong soil reducibility, and lack of effective nutrients. This study focuses on the typical cold waterlogged paddy fields in Hubei province, exploring the effects of different fertilizer application rates combined with soil amendments on soil characteristics, rice roots, and yield. The results showed that compared with the single application of chemical fertilizer (CK) treatment, the application of soil amendments (T1 treatment) increased yield by 16.76% by increasing the number of effective panicles and seed-setting rate, significantly promoted the growth and development of rice roots, with 14.0% increase in total root length, 27.1% increase in fresh root weight, 28.5% increase in dry root weight, and 21.5% increase in root volume. And it effectively reduced the reducibility of cold waterlogged paddy fields, enhanced soil oxidation characteristics, increased the redox potential by 16.3%, reduced the total amount of soil reducing substances by 1.86 cmol/kg, and reduced active reducing substances by 2.19 cmol/kg. Increase the content of soil available nutrients, with alkaline hydrolyzed nitrogen, available phosphorus, and available potassium increasing 11.0%, 28.5% and 39.2%, respectively. After reducing fertilizer by 20% and applying soil amendments (T2 treatment), the yield decreased by 4.98%, but the reduction did not reach significant level. The total root length increased by 5.0%, fresh root weight increased by 9.3%, the dry root weight increased by 18.6%, and root volume increased by 8.3%. The total amount of soil reducing substances was decreased by 1.95 cmol/kg, the active reducing substances were decreased by 2.24 cmol/kg, the redox potential was increased by 13.9%, and reduced soil reducing ability. In summary, the application of soil amendments can significantly increase yield, because it reduce the reducibility of cold waterlogged paddy fields, improve soil oxidation characteristics, improve root growth and development, increase effective nutrient supply in the soil.

Key words: Rice, Soil amendments, Cold waterlogged paddy field, Redox potential, Soil physical and chemical properties, Yield

Table 1

Effects of different treatments on root growth and development"

取样时间(月-日)
Sampling date
(month-day)
处理
Treatment
总根长
Total root
length (mm)
根鲜重(g/株)
Root fresh
weight (g/plant)
根干重(g/株)
Root dry
weight (g/plant)
根体积
Root volume
(cm3)
根系活力
Root activity
[μg/(g·h)]
根冠比
Root-shoot
ratio
06-14 T1 8456a 13.36a 1.38a 9.42a 103.3a 0.21a
06-14 T2 7417b 9.80c 0.90b 6.42b 101.7a 0.18a
06-14 CK 6736c 10.73b 1.09b 5.99b 85.5b 0.20a
07-14 T1 10 792a 72.64a 6.35a 37.87a 172.7a 0.14a
07-14 T2 9940a 62.38b 5.86a 33.82a 132.3b 0.16a
07-14 CK 9466b 57.13c 4.94b 31.24b 103.2c 0.10b

Table 2

Effects of different treatments on rice yield and its components"

处理
Treatment
有效穗数
Effective panicle
number (×104/hm2)
穗粒数
Number of grains
per panicle
千粒重
1000-grain
weight (g)
结实率
Seed-setting
rate (%)
理论产量
Theoretical yield
(t/hm2)
实际产量
Actual yield
(t/hm2)
较对照增产率
Yield increase rate compared
with control (%)
T1 273.9a 186.1a 24.38a 82.75a 10.28a 9.91a 16.76
T2 249.3b 179.4a 23.87a 74.53b 7.95c 8.07b -4.98
CK 264.0ab 180.9a 24.79a 74.56b 8.83b 8.49b

Fig.1

Effects of soil amendment application on soil redox potential Different lowercase letters indicate significant difference (P < 0.05)."

Table 3

Effects of soil amendments on soil reducing substances and soil nutrient content"

处理
Treatment
还原物质总量
Total amount of reducing
substances (cmol/kg)
活性还原物质
Active reducing
substances (cmol/kg)
氧化亚铁
Ferrous oxide
content (cmol/kg)
碱解氮
Available N
(mg/kg)
有效磷
Available P
(mg/kg)
速效钾
Available K
(mg/kg)
T1 8.26b 6.12b 3.58b 242a 19.80a 78a
T2 8.17b 6.07b 3.54b 216b 16.70b 54b
CK 10.12a 8.31a 4.68a 218b 15.40c 56b

Table 4

Correlation analysis between yield, its components, roots and soil fertility"

指标
Index

根长
Total
root
length
根体积
Root
volume
根系
活力
Root
activity
氧化还
原电位
Redox
potential
还原物
质总量
Total amount
of reducing
substances
活性还
原物质
Active
reducing
substances
氧化
亚铁
FeO
碱解氮
Available
N
有效磷
Available
P
速效钾
Available
K
穗粒数
Number
of grains
per
panicle
千粒重
1000-
grain
weight
结实率
Seed-
setting
rate
产量
Yield
总根长
Total root length
1.00 1.00** 1.00** 0.85 -0.75 -0.76 -0.75 0.91 1.00** 0.91 0.84 -0.29 0.93 0.84
根体积
Root volume
1.00 1.00** 0.87 -0.77 -0.78 -0.78 0.89 0.99** 0.89 0.82 -0.33 0.92 0.82
根系活力
Root activity
1.00 0.89 -0.79 -0.80 -0.80 0.88 0.99** 0.88 0.80 -0.36 0.91 0.80
氧化还原电位
Redox potential
1.00 -0.98* -0.99* -0.99* 0.56 0.82 0.56 0.43 -0.75 0.61 0.43
还原物质总量
Total amount of
reducing substances
1.00 1.00** 1.00** -0.40 -0.70 -0.40 -0.26 0.85 -0.46 -0.26
活性还原物质
Active reducing
substances
1.00 1.00** -0.42 -0.71 -0.42 -0.29 0.84 -0.48 -0.28
氧化亚铁FeO 1.00 -0.41 -0.71 -0.41 -0.27 0.85 -0.47 -0.27
碱解氮Available N 1.00 0.94 1.00** 0.99* 0.13 1.00** 0.99*
有效磷Available P 1.00 0.93 0.87 -0.23 0.96* 0.87
速效钾Available K 1.00 0.99** 0.14 1.00** 0.99*
穗粒数
Number of grains
per panicle
1.00 0.27 0.98* 1.00**
千粒重
1000-grain weight
1.00 0.07 0.28
结实率
Seed-setting rate
1.00 0.98*
产量Yield 1.00
[1] 徐祥玉, 张志毅, 王娟, 等. 起垄和施肥对冷浸田土壤氧化还原状况的影响. 中国生态农业学报, 2013, 21(6):666-673.
[2] 柴娟娟, 廖敏, 徐培智, 等. 我国主要低产水稻冷浸田土壤微生物特征分析. 水土保持学报, 2013, 27(1):247-251,257.
[3] 吕豪豪, 刘玉学, 杨生茂, 等. 南方地区冷浸田分类比较及治理策略. 浙江农业学报, 2015, 27(5):822-829.
[4] Qiu S L, Wang M K, Wang F, et al. Effects of open drainage dite design on bacterial and fungal communities of cold waterlagged paddy soils. Brazilian Journal of Microbiology, 2013, 44(3):983- 991.
[5] 王飞, 林诚, 李清华, 等. 不同氮肥用量与施肥时期对冷浸田单季稻生长及农学效率的影响. 土壤, 2017, 49(5):882-887.
[6] 陈士平, 吴华成, 周发明. 塑料波纹管改造山区冷浸田技术研究. 土壤肥料, 2001(6):42-43.
[7] 杨利, 姚其华, 范先鹏, 等. 鄂东南棕红壤丘陵区冷浸田施用过氧化钙效果. 湖北农业科学, 1997, 36(4):37-39.
[8] 刘杰, 罗尊长, 肖小平, 等. 不同有机无机肥配比对冷浸田土壤肥力及水稻生长的影响. 中国土壤与肥料, 2015(4):23-27.
[9] 孙耿, 刘杰, 罗尊长, 等. 化肥配施生物有机肥对冷浸田土壤养分和水稻生长的影响. 湖南农业科学, 2015(10):44-46.
[10] 陈正道, 杨艳. 土壤改良剂在水稻生产中的应用效果. 浙江农业科学, 2021, 62(1):6-8,10
doi: 10.16178/j.issn.0528-9017.20210103
[11] 朱小花, 赵利敏, 王荣辉, 等. 新型土壤改良剂对土壤质量及水稻产量的影响. 安徽农业科学, 2022, 50(24):152-156.
[12] 郑仁兵, 王慧. 含硅土壤调理剂对土壤pH值及水稻产量的影响. 现代农业科技, 2023(4):22-25.
[13] 林琛茗, 韦家少, 吴敏, 等. 土壤改良剂配施配方肥对土壤有机质及交换性能的影响. 热带作物学报, 2022, 43(10):2160- 2166.
doi: 10.3969/j.issn.1000-2561.2022.10.023
[14] 沈丽华, 陈桂荣, 颜有明, 等. 土壤改良剂不同用量对水稻产量的影响. 福建稻麦科技, 2021, 39(4):22-25.
[15] 朱宝国. 土壤调理剂对水稻秧苗生长的影响. 现代化农业, 2020(11):34-35.
[16] 刘杰, 罗尊长, 肖小平, 等. 土壤改良剂对冷浸田土壤特性及水稻生长的影响. 土壤, 2016, 48(3):529-533.
[17] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科学技术出版社, 2000.
[18] 马毅杰, 陆彦椿, 赵美芝, 等. 长江中游平原湖区土壤潜育化沼泽化的发展趋势与改良利用. 土壤, 1997, 29(1):1-5.
[19] 徐冉, 胡倩, 褚光, 等. 稻田增氧对水稻根系形态生理特征的影响. 中国稻米, 2022, 28(3):1-5.
doi: 10.3969/j.issn.1006-8082.2022.03.001
[20] 杨康, 张枝盛, 瞿和平, 等. 冷浸田改良对水稻根系发育及产量的影响. 湖北农业科学, 2021, 60(1):17-19,26.
[21] 侯文峰, 李小坤, 王思潮, 等. 石灰与秸秆配施对冷浸田水稻产量与土壤特性的影响. 华中农业大学学报, 2015, 34(5):58-62.
[22] 崔宏浩, 陈正刚, 朱青, 等. 外源物对冷浸田土壤亚铁量及水稻产量的影响. 西南农业学报, 2015, 28(1):220-225.
[23] 汪峰, 谌江华, 陈若霞, 等. 不同减氮模式下籼粳杂交稻甬优1540的产量和肥料利用率. 中国稻米, 2021, 27(3):93-97.
doi: 10.3969/j.issn.1006-8082.2021.03.019
[24] 陈晓萍, 曹雪仙, 陈文伟, 等. 氮肥减施对水稻产量、氮吸收和利用的影响. 浙江农业科学, 2021, 62(12):2367-2370.
doi: 10.16178/j.issn.0528-9017.20212626
[1] Fa Xiaotong, Meng Qinghao, Wang Chen, Gu Hanzhu, Jing Wenjiang, Zhang Hao. Research Progress on Response of Rice Root Morphology and Physiology to Alternate Wetting and Drying Irrigation [J]. Crops, 2024, 40(6): 1-8.
[2] Cheng Shengyu, Yang Caihong, Cui Wenqiang, Jiang Xiaomin. Effects of Different Farming Patterns on the Physiology and Structure of Maize Leaves [J]. Crops, 2024, 40(6): 103-112.
[3] Zeng Qianqian, Zhang Zhenyuan, Ma Xiue, Fang Yinghan, Zhai Jinlei, Jin Tao, Liu Dong, Liu Zhangyong. Effects of Diatomite Application on Yield and Nitrogen Use Efficiency of Rice [J]. Crops, 2024, 40(6): 147-152.
[4] Yang Xinyue, Xiang Ying, Chen Ziheng, Lin Qian, Deng Zhenpeng, Zhou Keyou, Li Mingcong, Wang Jichun. Effects of Organic Matter Application Rate on Yield and Nitrogen, Phosphorus and Potassium Nutrient Absorption and Utilization in Potato [J]. Crops, 2024, 40(6): 153-161.
[5] Zhang Jinxin, Ge Junzhu, Li Congfeng, Zhou Baoyuan. Characteristics of Climate Resources Distribution and Utilization during the Growth Period of Summer Maize in Huang-Huai-Hai Plain [J]. Crops, 2024, 40(6): 162-170.
[6] Zhao Ximei, Li Qi, Yan Ruyu, Xiang Fengyun, Li Yaqiong, Li Xuxun, Zou Jialong, Li Jifu. Effects of UAV Aerial Seeding Period and Seeding Methods on Yield, Quality and Economic Benefits of Winter Oilseed Rape [J]. Crops, 2024, 40(6): 179-185.
[7] Jin Yanjun, Zhu Hongsha, Li Chengdong, Wang Jinyu, Zhang Zhongfu, Wan Tingli, Zhou Aiai, Sa Gang, Cheng Lixiang, Liu Juan, Yu Bin. Regulation of Exogenous Hormones on Stomatal Density of Leaves and Tuber Yield of Potato in Aeroponics [J]. Crops, 2024, 40(6): 205-211.
[8] Hu Yaqing, Li Chunqing, Wang Guan, Xu Jiang. Analysis of Growth, Development and Carbon Metabolism of Rice BR Receptor Mutant Fn189 at Jointing Stage [J]. Crops, 2024, 40(6): 218-225.
[9] Sun Mingmao, Liu Lixia, Sun Hu, Cui Di. Analysis of Anthocyanin and Important Agronomic Traits in a Population of Recombinant Inbred Lines of Rice [J]. Crops, 2024, 40(6): 26-38.
[10] Yu Mu, Yang Haitang, Hu Yanling, Liu Ruanzhi, Shi Yanzhao, Li Pan, Han Yanhong, Zhu Zhenzhen, Li Shizhong, Guo Zhenchao. Genotype-by-Environment Interaction and Stability of Yield Components in Peanut [J]. Crops, 2024, 40(6): 55-60.
[11] Yang Tiexin, Dong Liqiang, Ma Liang, Feng Yingying, Li Zhiqiang. Evaluation on Yield and Quality of Fragrant Japonica Rice in Plain Rice Production Region in Central Liaoning [J]. Crops, 2024, 40(6): 71-77.
[12] Sun Jiameng, Gao Yuan, Chen Hu, Hua Qin, Lin Quanxiang, Chen Qingquan, Li Jincai, Zhang Haitao. Phenotypic Analysis and Gene Mapping of Rice Mutant Chalkiness and Shrunken Endosperm-2 [J]. Crops, 2024, 40(5): 1-7.
[13] Hao Qingting, Gao Wei, Zhang Zeyan, Yan Hubin, Zhu Huijun, Zhang Yaowen. The Effects of Iron Fertilizer Application on Yield and Fe Concent of Grains in Mung Bean [J]. Crops, 2024, 40(5): 105-109.
[14] Sun Guangxu, Liu Ying, Wang Xinyi, Kong Deyong, Wei Na, Xing Liwen, Guo Wei. Effects of Population Density and Fulvic Acid on Yield and Nutritional Quality of Kidney Bean [J]. Crops, 2024, 40(5): 110-118.
[15] Wang Shanshan, Yang Yulei, Liu Feihu, Yang Yang, Tang Kailei, Li Tao, Niu Longjiang, Du Guanghui. Effects of Concentrations and Treatment Periods of Polyazole on Inflorescence and Leaves Yield and Cannabidiol Content of Industrial Hemp [J]. Crops, 2024, 40(5): 119-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!