Crops ›› 2024, Vol. 40 ›› Issue (6): 162-170.doi: 10.16035/j.issn.1001-7283.2024.06.022

Previous Articles     Next Articles

Characteristics of Climate Resources Distribution and Utilization during the Growth Period of Summer Maize in Huang-Huai-Hai Plain

Zhang Jinxin1,2(), Ge Junzhu1(), Li Congfeng2, Zhou Baoyuan2()   

  1. 1College of Agronomy & Resource and Environment, Tianjin Agricultural University, Tianjin 300384, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Physiology and Production, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
  • Received:2024-03-12 Revised:2024-04-10 Online:2024-12-15 Published:2024-12-05

Abstract:

In order to clarify the characteristics of climate resource distribution and utilization during the growth period of summer maize in Huang-Huai-Hai region, and improve the yield potential and utilization efficiency of climate resource, this study analyzed the relationship between high yield formation of summer maize and allocation of light, temperature and water resources in growing season using the data of six representative test sites in Huang-Huai-Hai area from 2017 to 2018. The results showed that there were significant differences in summer maize yield between years and regions, and the difference in yield was mainly due to the difference in 1000-kernel weight. The two-year yield and 1000-kernel weight of Ningjin test site were higher than those of other test sites about 6.42%-49.77% and 3.43%-38.34%, respectively. The difference of climatic resources was the main reason for the difference of summer maize yield between regions. The yield showed significantly or extremely significantly positive correlation with pre-flowering accumulated temperature, precipitation and precipitation during the whole growth period, and extremely significantly negative correlation with post- flowering accumulated temperature. That was, when the effective pre-flowering and post-flowering accumulated temperature did not exceed 878.3 ℃ and 726.6 ℃ respectively, increasing the pre-flowering rainfall within the range of 174-510 mm during the whole growth period precipitation was beneficial to obtain higher summer maize yield. The results showed that the accumulated temperature and rainfall distribution before and after flowering had greater influence on the yield formation than the total accumulated temperature and rainfall during the whole growth period. Therefore, optimizing the pre-flowering/post-flowering climate resource allocation and improving the matching degree between maize growth and climate resources could be taken as an important measure to mitigate the impact of climate change and further improve the yield of summer maize and the utilization efficiency of climate resources in Huang-Huai-Hai Plain.

Key words: Summer maize, Yield, Climate resource distribution, Resources utilization efficiency

Table 1

Geographical distribution and plough layer information of each experimental site"

试验点
Experimental site
经度
Longitude (E)
纬度
Latitude (N)
有机质
Organic matter (%)
全氮
Total N (%)
速效磷
Olsen-P (mg/kg)
速效钾
Available-K (mg/kg)
宁津Ningjin 116.80 37.64 0.94 0.066 6.5 128.0
莘县Shenxian 115.67 36.23 0.94 0.066 6.5 128.0
内丘Neiqiu 114.51 37.28 1.18 0.070 4.5 137.4
永年Yongnian 114.43 36.78 0.97 0.064 5.5 146.0
叶县Yexian 113.35 33.62 1.06 0.069 6.0 152.0
原阳Yuanyang 113.93 35.06 1.06 0.069 6.0 152.0

Table 2

"

地点Site 播种日期Sowing date 收获日期Harvest date
宁津Ningjin 06-17 10-04
莘县Shenxian 06-20 10-07
内丘Neiqiu 06-22 10-05
永年Yongnian 06-23 10-07
叶县Yexian 06-08 09-19
原阳Yuanyang 06-11 09-21

Table 3

Yield and its components of summer maize at different sites from 2017 to 2018"

年份Year 地点Site 产量Yield (kg/hm2) 穗数Ear number (×104/hm2) 穗粒数Kernels per ear 千粒重1000-grain weight (g)
2017 宁津 10 896.8a 7.5a 491.4b 373.0a
莘县 9997.7b 7.4a 509.7ab 361.3ab
内丘 11 090.4a 7.5a 504.0ab 363.3ab
永年 8322.6d 7.4a 518.4ab 345.0ab
叶县 9148.6c 7.5a 525.0a 333.7b
原阳 8361.5d 7.3a 492.0b 330.0b
2018 宁津 10 423.5a 7.5a 527.6bc 371.0a
莘县 9843.5b 7.4a 428.0d 356.0ab
内丘 9836.0b 7.4a 521.1bc 327.0c
永年 10 037.5ab 7.5a 493.7c 347.7b
叶县 6268.2c 7.3a 570.7ab 226.7e
原阳 9381.0b 7.5a 608.0a 280.7d
变异来源Source of variation
年份Year (Y) ** ns * **
地点Site (S) ** ns ** **
Y×S ** ns ** **

Table 4

Distribution of effective accumulated temperature for summer maize"

年份
Year
地点
Site
花前Pre-flowering 花后Post-flowering 全生育期Whole growth period
积温量Tx (°C) 分配率TDR (%) 积温量Tx (°C) 分配率TDR (%) 积温量T (°C) 有效积温比值TR
2017 宁津 895.5 55 739.5 45 1635.0 1.21
莘县 880.0 53 773.5 47 1653.5 1.14
内丘 828.5 55 679.0 45 1507.5 1.22
永年 907.0 56 709.5 44 1616.5 1.28
叶县 802.0 49 826.5 51 1628.5 0.97
原阳 820.0 51 802.5 49 1622.5 1.02
2018 宁津 912.0 54 769.0 46 1681.0 1.19
莘县 883.0 52 822.5 48 1705.5 1.06
内丘 830.5 52 763.0 48 1593.5 1.09
永年 880.0 53 788.5 47 1668.5 1.12
叶县 819.5 49 857.0 51 1676.5 0.98
原阳 877.0 52 802.5 48 1679.5 1.09
平均值Mean value 861.3 53 777.8 47 1639.0 1.11
变异系数CV (%) 4.27 4.11 6.23 4.56 3.08 8.47

Table 5

Distribution of radiation for summer maize"

年份
Year
地点
Site
花前Pre-flowering 花后Post-flowering 全生育期Whole growth period
辐射量Ra (MJ/m2) 分配率RDR (%) 辐射量Ra (MJ/m2) 分配率RDR (%) 辐射量Ra (MJ/m2) 辐射比值RR
2017 宁津 1142.6 50 1132.1 50 2274.7 1.00
莘县 1121.1 53 987.6 47 2108.7 1.14
内丘 1054.6 54 907.5 46 1962.1 1.16
永年 1170.9 54 998.0 46 2168.9 1.17
叶县 1112.5 52 1017.0 48 2129.5 1.09
原阳 1184.6 53 1034.9 47 2219.5 1.14
2018 宁津 1433.6 51 1361.1 49 2794.7 1.05
莘县 1101.1 49 1152.4 51 2253.5 0.96
内丘 919.6 41 1317.2 59 2236.8 0.70
永年 1026.9 45 1233.4 55 2260.3 0.83
叶县 907.1 45 1126.5 55 2033.6 0.81
原阳 1545.1 57 1186.4 43 2731.5 1.30
平均值Mean value 1143.3 50 1121.2 50 2264.5 1.00
变异系数CV (%) 15.54 8.68 11.83 8.82 10.66 16.85

Table 6

Distribution of precipitation for summer maize"

年份
Year
地点
Site
花前Pre-flowering 花后Post-flowering 全生育期Whole growth period
降水量Pr (mm) 分配率PDR (%) 降水量Pr (mm) 分配率PDR (%) 降水量Pr (mm) 降水比值PR
2017 宁津 270 56 214 44 484 1.26
莘县 205 76 66 24 271 3.11
内丘 268 65 145 35 413 1.85
永年 118 62 72 38 190 1.64
叶县 207 50 216 50 413 0.96
原阳 88 51 86 49 174 1.02
2018 宁津 220 43 290 57 510 0.76
莘县 68 27 180 73 248 0.38
内丘 294 67 145 33 439 2.03
永年 138 53 124 47 262 1.12
叶县 119 44 151 56 270 0.79
原阳 296 61 190 39 486 1.56
平均值Mean value 191 55 157 45 347 1.21
变异系数CV (%) 41.18 22.59 40.39 27.16 33.84 57.53

Table 7

Correlation coefficients between summer maize yield, 1000-grain weight and the resources of light, temperature and water"

指标
Index
有效积温Tx 辐射量Ra 降水量Pr
花前
Pre-
flowering
花后
Post-
flowering
全生育期
Whole growth
period
花前
Pre-
flowering
花后
Post-
flowering
全生育期
Whole growth
period
花前
Pre-
flowering
花后
Post-
flowering
全生育期
Whole growth
period
产量Yield 0.34* -0.57** -0.30 0.20 0.08 0.19 0.53** 0.27 0.50**
千粒重1000-grain weight -0.56** -0.24 0.11 0.07 0.05 0.11 0.08 0.12

Fig.1

The correlation between summer maize yield and climate factors “*”and“**”indicate significant correlation at the 0.05 and 0.01 levels, respectively."

Table 8

Production efficiency of radiation, accumulated temperature, and precipitation for summer maize"

年份
Year
地点
Site
有效积温
生产效率
Production
efficiency of AT
[kg/(hm2·℃)]
光能生产效率
Production
efficiency of
radiation
(g/MJ)
降水生产效率
Production
efficiency
of precipitation
[kg/(hm2·mm)]
2017 宁津 6.66b 4.79b 22.51e
莘县 6.05c 4.74b 36.89c
内丘 7.36a 5.65a 26.85d
永年 5.15e 3.84d 43.80b
叶县 5.62d 4.30c 22.15e
原阳 5.15e 3.77d 48.05a
2018 宁津 6.06ab 3.65b 19.99c
莘县 5.77bc 4.37a 39.69a
内丘 6.17a 4.40a 22.41b
永年 6.02ab 4.44a 38.31a
叶县 3.74d 3.08c 23.22b
原阳 5.59c 3.43b 19.30c
变异来源Source of variation
年份Year (Y) ** ** **
地点Site (S) ** ** **
Y×S ** ** **
[1] 刘振, 宁堂原. 黄淮海平原灌区节水高效耕作制度构建. 干旱地区农业究, 2023, 41(3):31-40.
[2] 张金鑫, 葛均筑, 马玮, 等. 华北平原冬小麦―夏玉米种植体系周年水分高效利用研究进展. 作物学报, 2023, 49(4):879- 892.
doi: 10.3724/SP.J.1006.2023.21034
[3] 谢瑞芝, 明博. 玉米生产系统对气候变化的响应与适应. 中国农业科学, 2021, 54(17):3587-3591.
doi: 10.3864/j.issn.0578-1752.2021.17.003
[4] 缪丽娟, 刘冉, 邹扬锋, 等. 黄淮海平原气候变化及对粮食产量影响研究综述. 河南农业大学学报, 2023, 57(1):10-20.
[5] Anderson W B, Seager R, Baethgen W. Synchronous crop failures and climate-forced production variability. Science Advances, 2019, 5(7):1976.
doi: 10.1126/sciadv.aaw1976 pmid: 31281890
[6] 任三学, 周广胜, 赵花荣, 等. 华北北部夏玉米适期早播的增产效果. 华北农学报, 2023, 38(6):81-93.
doi: 10.7668/hbnxb.20194166
[7] 刘昌, 张红日, 赵相伟, 等. 山东省气候变化及其对冬小麦-夏玉米产量的影响. 水土保持研究, 2020, 27(3):379-384.
[8] 杨羡敏, 曾燕, 邱新法, 等. 1960-2000年黄河流域太阳总辐射气候变化规律研究. 应用气象学报, 2005, 16(2):243-248.
[9] 郑海霞, 封志明, 游松财. 基于GIS的甘肃省农业生产潜力研究. 地理科学进展, 2003, 22(4):400-408.
[10] 周宝元, 王志敏, 岳阳, 等. 冬小麦―夏玉米与双季玉米种植模式产量及光温资源利用特征比较. 作物学报, 2015, 41(9):1393-1405.
[11] 邢佩, 杨若子, 杜吴鹏, 等. 1961-2017年华北地区温度相关高影响天气气候事件变化特征分析. 沙漠与绿洲气象, 2023, 17(4):61-68.
[12] 王慧, 肖登攀, 赵彦茜, 等. 基于CMIP6气候模式的华北平原极端气温指数评估和预测. 地理与地理信息科学, 2021, 37(5):86-94,142.
[13] 刘淑云, 董树亭, 胡昌浩, 等. 玉米产量和品质与生态环境的关系. 作物学报, 2005, 31(5):571-576.
[14] 董宛麟, 程路, 孙志刚, 等. 夏玉米产量时空变化及气候年型分析. 玉米科学, 2020, 28(5):110-118.
[15] 李梁, 陶洪斌, 周祥利, 等. 密度对吉林省不同生态区玉米产量及其构成因素的影响. 中国农业大学学报, 2011, 16(6):37-42.
[16] 高志英, 张兆沛, 樊蕾, 等. 光照强度和氮素水平对玉米生长发育、光合生理及干物质积累的影响. 云南农业大学学报(自然科学), 2020, 35(2):187-195.
[17] 王勇, 张镇涛, 张方亮, 等. 气候变化背景下玉米品种更替对新疆光热资源利用效率的影响. 中国农业气象, 2020, 41(6):331-344.
[18] He H Y, Hu Q, Li Re, et al. Regional gap in maize production, climate and resource utilization in China. Field Crops Research, 2020, 254:107830.
[19] 陈静, 任佰朝, 赵斌, 等. 基于品种生育期有效积温确定夏玉米适宜播期. 中国农业科学, 2021, 54(17):3632-3646.
doi: 10.3864/j.issn.0578-1752.2021.17.007
[20] Cicchino M, Edreira J I R, Uribelarrea M, et al. Heat stress in field-grown maize: response of physiological determinants of grain yield. Crop Science, 2010, 50(4):1438-1448.
[21] 商蒙非, 石晓宇, 赵炯超, 等. 气候变化背景下中国不同区域玉米生育期高温胁迫时空变化特征. 作物学报, 2023, 49(1):167-176.
doi: 10.3724/SP.J.1006.2023.23007
[22] 王瑞, 李向岭, 郭栋, 等. 增施氮肥对夏玉米花后高温胁迫下籽粒碳氮代谢的影响. 作物学报, 2023, 49(12):3342-3351.
doi: 10.3724/SP.J.1006.2023.33003
[23] 付雪丽, 张惠, 贾继增, 等. 冬小麦―夏玉米“双晚”种植模式的产量形成及资源效率研究. 作物学报, 2009, 35(9):1708-1714.
doi: 10.3724/SP.J.1006.2009.01708
[24] 刘英博, 周际, 陈颖露, 等. 基于CiteSpace的华北冬小麦-夏玉米周年优化灌溉制度的节水潜力分析. 中国农业大学学报, 2022, 27(6):1-20.
[25] 赵泽欢, 范兴科. 土壤含水量对夏玉米蒸发蒸腾量和光合性能的影响. 干旱地区农业研究, 2022, 40(5):126-133.
[26] 刘栩辰, 马守田, 黄超, 等. 黄淮海平原夏玉米需水量和缺水量时空分布特征. 水土保持学报, 2023, 37(2):179-186.
[27] 陈文婷, 周曙东. 不同生长阶段降水对夏玉米产出的影响. 华南农业大学学报(社会科学版), 2022, 21(4):91-103.
[28] 张吉旺, 董树亭, 王空军, 等. 大田遮荫对夏玉米光合特性的影响. 作物学报, 2007, 33(2):216-222.
[29] 张吉旺, 董树亭, 王空军, 胡昌浩, 刘鹏. 遮荫对夏玉米产量及生长发育的影响. 应用生态学报, 2006, 17(4):4657-4662.
[30] 孙智超, 张吉旺. 弱光胁迫影响玉米产量形成的生理机制及调控效应. 作物学报, 2023, 49(1):12-23.
doi: 10.3724/SP.J.1006.2023.13064
[31] Gao J, Zhao B, Dong S T, et al. Response of summer maize photosynthate accumulation and distribution to shading stress assessed by using 13CO2 stable isotope tracer in the field. Frontiers in Plant Science, 2017, 8:1821
[32] 杨云山. 光辐射对玉米产量及其生长发育的影响. 石河子:石河子大学, 2023.
[33] 周宝元, 马玮, 孙雪芳, 等. 冬小麦-夏玉米高产模式周年气候资源分配与利用特征研究. 作物学报, 2019, 45(4):589-600.
doi: 10.3724/SP.J.1006.2019.81067
[34] 朱亚利. 不同玉米品种与密度配置对光温资源利用效率及产量的影响. 杨凌:西北农林科技大学, 2021.
[35] 贾宁. 玉米种质资源水分利用效率评价. 呼和浩特:内蒙古农业大学, 2011.
[1] Fa Xiaotong, Meng Qinghao, Wang Chen, Gu Hanzhu, Jing Wenjiang, Zhang Hao. Research Progress on Response of Rice Root Morphology and Physiology to Alternate Wetting and Drying Irrigation [J]. Crops, 2024, 40(6): 1-8.
[2] Cheng Shengyu, Yang Caihong, Cui Wenqiang, Jiang Xiaomin. Effects of Different Farming Patterns on the Physiology and Structure of Maize Leaves [J]. Crops, 2024, 40(6): 103-112.
[3] Wang Benfu, Yu Zhenyuan, Song Pingyuan, Zhang Zuolin, Zhang Zhisheng, Li Yang, Su Zhangfeng, Zheng Zhongchun, Cheng Jianping. Effects of Soil Amendments on Soil Characteristics and Rice Growth in Cold Waterlogged Paddy Field [J]. Crops, 2024, 40(6): 126-131.
[4] Zeng Qianqian, Zhang Zhenyuan, Ma Xiue, Fang Yinghan, Zhai Jinlei, Jin Tao, Liu Dong, Liu Zhangyong. Effects of Diatomite Application on Yield and Nitrogen Use Efficiency of Rice [J]. Crops, 2024, 40(6): 147-152.
[5] Yang Xinyue, Xiang Ying, Chen Ziheng, Lin Qian, Deng Zhenpeng, Zhou Keyou, Li Mingcong, Wang Jichun. Effects of Organic Matter Application Rate on Yield and Nitrogen, Phosphorus and Potassium Nutrient Absorption and Utilization in Potato [J]. Crops, 2024, 40(6): 153-161.
[6] Zhao Ximei, Li Qi, Yan Ruyu, Xiang Fengyun, Li Yaqiong, Li Xuxun, Zou Jialong, Li Jifu. Effects of UAV Aerial Seeding Period and Seeding Methods on Yield, Quality and Economic Benefits of Winter Oilseed Rape [J]. Crops, 2024, 40(6): 179-185.
[7] Jin Yanjun, Zhu Hongsha, Li Chengdong, Wang Jinyu, Zhang Zhongfu, Wan Tingli, Zhou Aiai, Sa Gang, Cheng Lixiang, Liu Juan, Yu Bin. Regulation of Exogenous Hormones on Stomatal Density of Leaves and Tuber Yield of Potato in Aeroponics [J]. Crops, 2024, 40(6): 205-211.
[8] Yu Mu, Yang Haitang, Hu Yanling, Liu Ruanzhi, Shi Yanzhao, Li Pan, Han Yanhong, Zhu Zhenzhen, Li Shizhong, Guo Zhenchao. Genotype-by-Environment Interaction and Stability of Yield Components in Peanut [J]. Crops, 2024, 40(6): 55-60.
[9] Yang Tiexin, Dong Liqiang, Ma Liang, Feng Yingying, Li Zhiqiang. Evaluation on Yield and Quality of Fragrant Japonica Rice in Plain Rice Production Region in Central Liaoning [J]. Crops, 2024, 40(6): 71-77.
[10] Hao Qingting, Gao Wei, Zhang Zeyan, Yan Hubin, Zhu Huijun, Zhang Yaowen. The Effects of Iron Fertilizer Application on Yield and Fe Concent of Grains in Mung Bean [J]. Crops, 2024, 40(5): 105-109.
[11] Sun Guangxu, Liu Ying, Wang Xinyi, Kong Deyong, Wei Na, Xing Liwen, Guo Wei. Effects of Population Density and Fulvic Acid on Yield and Nutritional Quality of Kidney Bean [J]. Crops, 2024, 40(5): 110-118.
[12] Wang Shanshan, Yang Yulei, Liu Feihu, Yang Yang, Tang Kailei, Li Tao, Niu Longjiang, Du Guanghui. Effects of Concentrations and Treatment Periods of Polyazole on Inflorescence and Leaves Yield and Cannabidiol Content of Industrial Hemp [J]. Crops, 2024, 40(5): 119-124.
[13] Huang Yulan, Liu Wenjun, Li Yanying, Zhou Jia, Zhou Lingzhi, Lao Chengying, Li Suping, Shen Zhangyou, Wei Benhui. Effects of Intercropping Cassava with Pumkin of Different Densities in Cassava Fields on Crop Yield, Economic Efficiency and Land Productivity [J]. Crops, 2024, 40(5): 125-130.
[14] Tian Qinqin, Zhuo Le, Chen Nana, Zheng Dechao, Wu Xiaojing, Yu Peng, Chen Pingping, Yi Zhenxie. Effects of Calcium-Magnesium Hydrotalcite on Cadmium Content in Brown Rice of Double-Cropping Rice and Soil Characteristics [J]. Crops, 2024, 40(5): 131-139.
[15] Mu Jianguo, Wang Peng, Liu Yantao, Cui Jiawei, Chen Yanfang, Wan Sumei, Chen Guihong. Effects of Different Harvesting Periods on the Commerciality and Yield of Edible Sunflower [J]. Crops, 2024, 40(5): 146-151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!