Crops ›› 2018, Vol. 34 ›› Issue (6): 27-35.doi: 10.16035/j.issn.1001-7283.2018.06.005

Previous Articles     Next Articles

Analysis of Saline-Alkaline Tolerance and Screening of Identification Indexes of Different Oat Genotypes at the Germination Stage

Fu Luanhong,Yu Song,Yu Lihe,Xue Yingwen,Guo Wei   

  1. College of Agriculture, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing 163319, Heilongjiang, China
  • Received:2018-05-08 Revised:2018-08-29 Online:2018-12-15 Published:2018-12-06

Abstract:

This study was to explore the salt alkaline bearing capacity of different oat cultivars at the germination stage and screen the oat cultivars which are well suited to grow in Songnen Plain. NaHCO3 stress was used to simulate the saline conditions of Songnen Plain. Forty-nine major oat cultivars were used in this research. Ten growth indexes, including germination rate (GR), germination potential (GP), germination index (GI), vitality index (VI), radicle fresh weight (RFW), plumule fresh weight (GFW), radicle dry weight (RDW), plumule dry weight (GDW), radicle length (RL), plumule length (GL) were measured under 150mmol/L NaHCO3 stress. Different analysis methods were used to analyze the experiment data to assess the grade of saline-alkaline tolerance of all 49 oat cultivars. The results showed that three independent comprehensive indexes, which included GP, RFW, RL, were obtained by principle component analysis of saline-alkaline tolerance coefficients of all growth indexes. The comprehensive indexes covered 92.182% of the information of all data; 49 oat cultivars were divided into four groups through subordinate function analysis and clustering analysis. Among them, Mengyan 1, SX3 and Jinyan 9 were highly resistant to saline-alkaline,T6, T13 and other three cultivars were salt-tolerant cultivars, Bayou 12, SX2 and other 27 cultivars were moderate tolerant to saline-alkaline, HLJ 1, Baiyan 7 and other 10 cultivars were sensitive to saline-alkaline. The best regression equation was obtained by stepwise regression analysis, D=–0.09+0.447GP+1.018RFW+0.366RL (R 2=1.000). It can provide a way for rapid screening of saline-alkali tolerant cultivars.

Key words: Oat, Germination stage, Saline-alkaline tolerance, Multiple analysis, Identification index

Table 1

Provided oat cultivars and origins"

编号Code 品种Cultivar 来源Origin 编号Code 品种Cultivar 来源Origin
1 HLJ 1 中国黑龙江 26 坝莜13号Bayou 13 中国河北
2 白燕2号 Baiyan 2 中国吉林 27 坝莜14号Bayou 14 中国河北
3 白燕3号 Baiyan 3 中国吉林 28 坝莜18号Bayou 18 中国河北
4 白燕5号 Baiyan 5 中国吉林 29 翼张燕4号Yizhangyan 4 中国河北
5 白燕7号 Baiyan 7 中国吉林 30 张燕7号Zhangyan 7 中国河北
6 白燕8号 Baiyan 8 中国吉林 31 张燕8号Zhangyan 8 中国河北
7 草莜1号 Caoyou 1 中国内蒙古 32 SX1 中国山西
8 都燕3号 Duyan 3 中国内蒙古 33 SX2 中国山西
9 定燕2号 Dingyan 2 中国内蒙古 34 SX3 中国山西
10 定莜9号 Dingyou 9 中国内蒙古 35 SX4 中国山西
11 晋燕8号 Jinyan 8 中国内蒙古 36 T6 加拿大
12 晋燕9号 Jinyan 9 中国内蒙古 37 T7 加拿大
13 蒙燕1号 Mengyan 1 中国内蒙古 38 T8 加拿大
14 蒙燕2号 Mengyan 2 中国内蒙古 39 T9 加拿大
15 同燕2号 Tongyan 2 中国内蒙古 40 T10 加拿大
16 三分三Sanfensan 中国内蒙古 41 T11 加拿大
17 远杂2号Yuanza 2 中国内蒙古 42 T12 加拿大
18 燕科2号Yanke 2 中国内蒙古 43 T13 加拿大
19 坝莜1号Bayou 1 中国河北 44 T14 加拿大
20 坝莜3号Bayou 3 中国河北 45 T15 加拿大
21 坝莜4号Bayou 4 中国河北 46 T16 加拿大
22 坝燕6号Bayou 6 中国河北 47 T17 加拿大
23 坝莜9号Bayou 9 中国河北 48 T19 加拿大
24 坝燕11号Bayan 11 中国河北 49 T20 加拿大
25 坝莜12号Bayou 12 中国河北

Table 2

Saline-alkali tolerance coefficients and variance analysis of growth indexes (F-value)"

品种编号Cultivar code GR GP GI VI RFW GFW RDW GDW RL GL
1 0.186 0.205 0.208 0.144 0.122 0.374 0.063 0.692 0.051 0.285
2 0.256 0.148 0.120 0.036 0.052 0.138 0.068 0.299 0.069 0.105
3 0.424 0.214 0.194 0.118 0.094 0.367 0.133 0.606 0.293 0.263
4 0.738 0.583 0.385 0.176 0.113 0.230 0.103 0.458 0.032 0.164
5 0.218 0.162 0.150 0.120 0.135 0.579 0.101 0.803 0.062 0.369
6 0.356 0.356 0.360 0.148 0.086 0.281 0.067 0.410 0.073 0.206
7 0.776 0.724 0.565 0.325 0.059 0.287 0.052 0.575 0.031 0.210
8 0.738 0.679 0.680 0.342 0.125 0.261 0.119 0.503 0.084 0.144
9 0.174 0.153 0.161 0.087 0.107 0.278 0.067 0.544 0.067 0.164
10 0.549 0.571 0.376 0.215 0.075 0.281 0.052 0.571 0.071 0.186
11 0.651 0.553 0.537 0.346 0.207 0.247 0.134 0.644 0.071 0.271
12 0.655 0.452 0.386 0.248 0.545 0.538 0.498 0.644 0.150 0.476
13 0.695 0.467 0.395 0.313 0.525 0.618 0.554 0.793 0.363 0.617
14 0.690 0.671 0.618 0.279 0.064 0.215 0.100 0.451 0.032 0.122
15 0.507 0.507 0.442 0.245 0.082 0.292 0.073 0.554 0.070 0.168
16 0.639 0.549 0.459 0.222 0.058 0.218 0.040 0.483 0.048 0.112
17 0.761 0.625 0.495 0.371 0.045 0.404 0.051 0.749 0.018 0.275
18 0.622 0.544 0.492 0.259 0.056 0.272 0.036 0.526 0.036 0.161
19 0.685 0.586 0.519 0.299 0.092 0.416 0.080 0.575 0.076 0.252
20 0.868 0.803 0.662 0.221 0.039 0.180 0.038 0.333 0.013 0.118
21 0.820 0.787 0.699 0.425 0.057 0.264 0.067 0.608 0.053 0.156
22 0.380 0.130 0.184 0.196 0.111 0.697 0.103 1.066 0.070 0.505
品种编号Cultivar code GR GP GI VI RFW GFW RDW GDW RL GL
23 0.716 0.659 0.535 0.289 0.178 0.427 0.203 0.541 0.068 0.245
24 0.433 0.424 0.385 0.200 0.288 0.296 0.202 0.520 0.126 0.250
25 0.584 0.494 0.358 0.121 0.083 0.178 0.065 0.337 0.055 0.106
26 0.826 0.721 0.682 0.285 0.125 0.246 0.094 0.417 0.037 0.168
27 0.800 0.622 0.474 0.311 0.272 0.446 0.294 0.655 0.131 0.381
28 0.307 0.253 0.170 0.053 0.043 0.159 0.041 0.311 0.061 0.089
29 0.354 0.241 0.223 0.180 0.235 0.667 0.244 0.809 0.088 0.420
30 0.625 0.287 0.297 0.223 0.422 0.620 0.371 0.751 0.238 0.511
31 0.739 0.506 0.379 0.338 0.128 0.707 0.121 0.891 0.047 0.593
32 0.410 0.346 0.275 0.143 0.047 0.274 0.040 0.520 0.040 0.150
33 0.648 0.540 0.500 0.227 0.074 0.208 0.063 0.454 0.024 0.137
34 0.933 0.899 0.783 0.511 0.405 0.482 0.422 0.652 0.158 0.368
35 0.518 0.494 0.487 0.293 0.057 0.414 0.050 0.602 0.045 0.372
36 0.865 0.773 0.648 0.409 0.256 0.506 0.280 0.631 0.069 0.294
37 0.713 0.515 0.478 0.348 0.154 0.612 0.101 0.728 0.028 0.355
38 0.227 0.239 0.183 0.131 0.037 0.386 0.034 0.714 0.021 0.227
39 0.348 0.288 0.291 0.243 0.375 0.813 0.320 0.833 0.064 0.615
40 0.303 0.241 0.227 0.140 0.078 0.406 0.062 0.616 0.030 0.300
41 0.284 0.293 0.237 0.212 0.064 0.411 0.035 0.894 0.020 0.441
42 0.627 0.643 0.585 0.352 0.166 0.451 0.109 0.602 0.020 0.344
43 0.533 0.467 0.423 0.409 0.396 0.808 0.202 0.966 0.044 0.471
44 0.556 0.558 0.489 0.341 0.129 0.561 0.121 0.698 0.035 0.446
45 0.729 0.571 0.528 0.460 0.451 0.624 0.317 0.872 0.059 0.343
46 0.147 0.191 0.140 0.084 0.027 0.467 0.033 0.600 0.017 0.304
47 0.576 0.500 0.456 0.342 0.254 0.651 0.271 0.750 0.033 0.413
48 0.419 0.341 0.326 0.251 0.156 0.512 0.164 0.771 0.024 0.319
49 0.224 0.293 0.253 0.172 0.031 0.570 0.029 0.678 0.020 0.535
F 6.554 5.003 6.046 3.632 23.040 139.931 32.157 4.469 27.093 167.977

Table 3

Correlations among saline-alkali tolerance coefficients"

指标Index GR GP GI VI RFW GFW RDW GDW RL GL
GR 1
GP 0.919** 1
GI 0.891** 0.966** 1
VI 0.771** 0.768** 0.816** 1
RFW 0.278 0.107 0.155 0.444** 1
GFW -0.072 -0.210 -0.155 0.345* 0.589** 1
RDW 0.330* 0.148 0.177 0.419** 0.953** 0.541** 1
GDW -0.116 -0.244 -0.190 0.356* 0.435** 0.872** 0.365** 1
RL 0.123 -0.092 -0.075 0.027 0.583** 0.184 0.676** 0.119 1
GL -0.084 -0.228 -0.184 0.279 0.596** 0.909** 0.580** 0.817** 0.324* 1

Table 4

Component matrix"

主分量
Principle component
特征根
Eigenvalue
贡献率(%)
Contribution rate
累计贡献率(%)
Cumulative contribution
因子负荷量Factor loading
GR GP GI VI RFW GFW RDW GDW RL GL
CI1 4.240 42.399 42.399 0.507 0.347 0.395 0.744 0.863 0.726 0.860 0.623 0.478 0.725
CI2 3.583 35.826 78.225 0.811 0.922 0.895 0.542 -0.166 -0.537 -0.127 -0.531 -0.219 -0.564
CI3 1.396 13.957 92.182 -0.041 0.080 0.103 0.320 -0.333 0.362 -0.428 0.483 -0.751 0.228

Table 5

The weight, subordinative function value, D value and comprehensive assessment of different oat cultivars"

品种编号Cultivar code U(S1 U(S2 U(S3 D值Dvalue 耐盐碱等级Grade of saline-alkaline tolerance
1 0.184 0.098 0.108 0.145 弱Weak
2 0.048 0.024 0.160 0.054 弱Weak
3 0.131 0.109 0.801 0.209 中Middle
4 0.166 0.589 0.053 0.297 中Middle
5 0.209 0.042 0.140 0.142 弱Weak
6 0.114 0.294 0.171 0.184 中Middle
7 0.062 0.772 0.051 0.305 中Middle
8 0.190 0.714 0.203 0.372 中Middle
9 0.155 0.030 0.154 0.112 弱Weak
10 0.094 0.573 0.167 0.268 中Middle
11 0.349 0.550 0.166 0.395 中Middle
12 1.000 0.419 0.392 0.722 强Strong
13 0.961 0.438 1.000 0.786 强Strong
14 0.071 0.704 0.055 0.287 中Middle
15 0.108 0.490 0.162 0.246 中Middle
16 0.060 0.545 0.099 0.231 中Middle
17 0.035 0.644 0.014 0.242 中Middle
18 0.057 0.538 0.066 0.224 中Middle
19 0.125 0.593 0.180 0.293 中Middle
20 0.023 0.875 0.000 0.313 中Middle
21 0.059 0.854 0.113 0.340 中Middle
22 0.164 0.000 0.162 0.107 弱Weak
品种编号Cultivar code U(S1 U(S2 U(S3 D值Dvalue 耐盐碱等级Grade of saline-alkaline tolerance
23 0.291 0.688 0.156 0.410 中Middle
24 0.504 0.382 0.323 0.439 中Middle
25 0.108 0.474 0.121 0.236 中Middle
26 0.189 0.769 0.069 0.373 中Middle
27 0.473 0.640 0.337 0.513 强Strong
28 0.032 0.160 0.138 0.090 弱Weak
29 0.401 0.144 0.214 0.289 中Middle
30 0.763 0.204 0.642 0.555 强Strong
31 0.196 0.489 0.098 0.284 中Middle
32 0.038 0.281 0.077 0.127 弱Weak
33 0.091 0.533 0.031 0.236 中Middle
34 0.730 1.000 0.415 0.782 强Strong
35 0.058 0.473 0.090 0.205 中Middle
36 0.442 0.836 0.159 0.541 强Strong
37 0.246 0.501 0.044 0.307 中Middle
38 0.019 0.142 0.024 0.062 弱Weak
39 0.672 0.205 0.147 0.444 中Middle
40 0.099 0.144 0.048 0.108 弱Weak
41 0.072 0.212 0.020 0.114 弱Weak
42 0.269 0.667 0.021 0.374 中Middle
43 0.713 0.438 0.089 0.539 强Strong
44 0.197 0.557 0.064 0.304 中Middle
45 0.819 0.573 0.132 0.646 强Strong
46 0.000 0.080 0.013 0.029 弱Weak
47 0.439 0.481 0.056 0.404 中Middle
48 0.250 0.274 0.033 0.230 中Middle
49 0.009 0.212 0.020 0.080 弱Weak
权重Weight 0.528 0.344 0.128

Fig.1

Clustering diagram of 49 oat cultivars"

Table 6

Accuracy analysis of regression equation"

品种编号Cultivar code 原始值
Original value
拟合值
Fitting value
拟合误差
Fitting error
拟合精度(%)
Fitting precision
1 0.145 0.145 0.000 99.999
2 0.054 0.054 0.000 99.997
3 0.209 0.209 0.000 99.999
4 0.297 0.297 0.000 99.999
5 0.142 0.142 0.000 99.999
6 0.184 0.184 0.000 99.999
7 0.305 0.305 0.000 99.999
8 0.372 0.372 0.000 99.999
9 0.112 0.112 0.000 99.999
10 0.268 0.268 0.000 99.998
11 0.395 0.395 0.000 99.999
12 0.722 0.722 0.000 99.999
13 0.786 0.786 0.000 99.999
14 0.287 0.287 0.000 99.999
品种编号Cultivar code 原始值
Original value
拟合值
Fitting value
拟合误差
Fitting error
拟合精度(%)
Fitting precision
15 0.246 0.246 0.000 99.999
16 0.231 0.231 0.000 99.999
17 0.242 0.242 0.000 99.999
18 0.224 0.224 0.000 99.999
19 0.293 0.293 0.000 99.999
20 0.313 0.313 0.000 99.999
21 0.340 0.340 0.000 99.999
22 0.107 0.107 0.000 99.998
23 0.410 0.410 0.000 99.999
24 0.439 0.439 0.000 99.999
25 0.236 0.236 0.000 99.999
26 0.373 0.373 0.000 99.999
27 0.513 0.513 0.000 99.999
28 0.090 0.090 0.000 99.995
29 0.289 0.289 0.000 99.999
30 0.555 0.555 0.000 99.999
31 0.284 0.284 0.000 99.998
32 0.127 0.127 0.000 99.996
33 0.236 0.236 0.000 99.999
34 0.782 0.782 0.000 99.999
35 0.205 0.205 0.000 99.999
36 0.541 0.541 0.000 99.999
37 0.307 0.307 0.000 99.999
38 0.062 0.062 0.000 99.999
39 0.444 0.444 0.000 99.999
40 0.108 0.108 0.000 99.998
41 0.114 0.114 0.000 99.997
42 0.374 0.374 0.000 99.999
43 0.539 0.539 0.000 99.999
44 0.304 0.304 0.000 99.999
45 0.646 0.646 0.000 99.999
46 0.029 0.029 0.000 99.989
47 0.404 0.404 0.000 99.999
48 0.230 0.230 0.000 99.999
49 0.080 0.080 0.000 99.996
[1] 李文昊, 王振华, 郑旭荣 , 等. 新疆绿洲盐碱地滴灌条件下地下水局部动态对荒地盐分的影响. 干旱区研究, 2016,33(5):1110-1118.
doi: 10.13866/j.azr.2016.05.27
[2] 杨传宝, 倪惠菁, 李善文 , 等. 白杨派无性系苗期对NaHCO3胁迫的生长生理响应及耐盐碱性综合评价. 植物生理学报, 2016,52(10):1555-1564.
[3] Wang L X, Fang C, Wang K . Physiological responses of Leymus Chinensis to long-term salt,alkali and mixed salt-alkali stresses. Journal of Plant Nutrition, 2015,38:526-540.
doi: 10.1080/01904167.2014.937874
[4] 徐长林 . 高寒牧区不同燕麦品种生长特性比较研究. 草业学报, 2012,21(2):280-285.
doi: 10.11686/cyxb20120236
[5] 葛军勇, 臧华栋, 钱欣 , 等. 白城地区皮燕麦肥料效应与推荐施肥研究. 作物杂志, 2015(3):98-103.
doi: 10.16035/j.issn.1001-7283.2015.03.019
[6] 范远, 任长忠, 李品芳 , 等. 盐碱胁迫下燕麦生长及阳离子吸收特征. 应用生态学报, 2011,22(11):2875-2882.
[7] Verma O P S, Yadava R B R . Salt tolerance of some oats (Avena sativa L.) varieties at germination and seedling stage. Journal of Agronomy and Crop Science, 1986,156(2):123-127.
doi: 10.1111/j.1439-037X.1986.tb00016.x
[8] Khan A A, Rao S A, McNeilly T . Assessment of salinity tolerance based upon seedling root growth response functions in maize (Zea mays L.). Euphytica, 2003,131(1):81-89.
doi: 10.1023/A:1023054706489
[9] 陈新, 张宗文, 吴斌 . 裸燕麦萌发期耐盐性综合评价与耐盐种质筛选. 中国农业科学, 2014,47(10):2038-2046.
doi: 10.3864/j.issn.0578-1752.2014.10.018
[10] 武俊英, 刘景辉, 翟利剑 , 等. 不同品种燕麦种子萌发和幼苗生长的耐盐性. 生态学杂志, 2009,28(10):1960-1965.
[11] 高建明, 夏卜贤, 袁庆华 , 等. 高粱种质材料幼苗期耐盐碱性评价. 应用生态学报, 2012,23(5):1303-1310.
[12] 马晓军, 金峰学, 杨姗 , 等. 作物耐盐碱数量性状基因座(QTL)定位. 分子植物育种, 2015,13(1):221-227.
[13] 武俊英 . 燕麦耐盐生理特性及农艺措施调控研究. 呼和浩特:内蒙古农业大学, 2009: 34-35.
doi: 10.7666/d.y1474294
[14] 伏兵哲, 兰剑, 李小伟 , 等. PEG-6000干旱胁迫对16个苜蓿品种种子萌发的影响. 种子, 2012,31(4):10-14.
doi: 10.3969/j.issn.1001-4705.2012.04.004
[15] 黄玉梅, 张杨雪, 刘庆林 , 等. 水杨酸对盐胁迫下百日草种子萌发及幼苗生理特性的影响. 草业学报, 2015,24(7):97-105.
doi: 10.11686/cyxb2014516
[16] 夏新迪 . 不同品种玉米对砷胁迫的生理反应特性研究. 沈阳:沈阳农业大学, 2016: 28.
[17] 祁栋灵, 张三元, 曹桂兰 , 等. 水稻发芽期和幼苗前期耐碱性的鉴定方法研究. 植物遗传资源学报, 2006,7(1):74-80.
doi: 10.3969/j.issn.1672-1810.2006.01.015
[18] 潘世驹, 李红宇, 姜玉伟 , 等. 寒地水稻幼苗期耐盐资源筛选. 南方农业学报, 2015,46(10):1775-1779.
doi: 10.3969/j:issn.2095-1191.2015.10.1775
[19] 孙璐, 周宇飞, 汪澈 , 等. 高粱品种萌发期耐盐性筛选与鉴定. 中国农业科学, 2012,45(9):1714-1722.
doi: 10.3864/j.issn.0578-1752.2012.09.006
[20] 郭瑞锋, 张永福, 任月梅 , 等. 混合盐碱胁迫对谷子萌发、幼芽生长的影响及耐盐碱品种筛选. 作物杂志, 2017(4):63-66.
doi: 10.16035/j.issn.1001-7283.2017.04.011
[21] 任丽彤, 孔广超, 邵红雨 , 等. 小黑麦萌发期耐盐性评价. 麦类作物学报, 2012,32(5):926-931.
doi: 10.7606/j.issn.1009-1041.2012.05.021
[22] 李士磊, 霍鹏, 高欢欢 , 等. 复合盐胁迫对小麦萌发的影响及耐盐阈值的筛选. 麦类作物学报, 2012,32(2):260-264.
doi: 10.7606/j.issn.1009-1041.2012.02.013
[1] Peina Lu,Jinghui Liu,Baoping Zhao,Lijun Li,Xuefeng Lei,Fengyi Zhang. Effects of Microbial Fertilizer on Soil Characteristics and Root Exudates of Oats in Saline-alkali Land [J]. Crops, 2017, 33(5): 85-92.
[2] Juan Wang,Yinfan Li,Xiuzhi Liang,Minna Zheng. Morphological Diversity of Main Oat Germplasm Resources in Northern China [J]. Crops, 2017, 33(4): 27-32.
[3] Bin Zhang,Junyong Ge,Wanjun Yang,Xia Wang,Changye Tian,Yunxia Li,Wenbo Zuo,Min Xu. Effects of Nitrogen Topdressing at Jointing Stage on Yield and Profit of Main Varieties of Naked Oat (Avena nuda L.) [J]. Crops, 2017, 33(2): 81-87.
[4] Wencai Yang,Ba La,wei Wei. Effects of Combined Application of N and P Fertilizers on the Yield and Quality of Oat-Pea Mixture in Agricultural Areas of River Valleys in Tibet [J]. Crops, 2016, 32(5): 75-80.
[5] Youjun Chen,Qingping Zhou,Jian Sun,Lihua Tian. Comparison of Lodging Resistance among Different Oats (Avena sativa L.) [J]. Crops, 2016, 32(5): 44-49.
[6] Xingyan Guo,Danni Liang,Jian Lan. Research on Productive Performance and Nutritive Value of 11 Oat Varieties in Ningxia Irrigation Area [J]. Crops, 2016, 32(4): 105-111.
[7] Runlian Wang,Zhidong Zhang,Jinghui Liu,Huijun Liu,Baoping Zhao. Effects of No-Tillage with Stubble Mulch on Soil Nutrients, Soil Enzyme Activities and Oat Yield [J]. Crops, 2016, 32(3): 134-138.
[8] . [J]. Crops, 2013, 29(3): 127-131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!