Crops ›› 2017, Vol. 33 ›› Issue (5): 85-92.doi: 10.16035/j.issn.1001-7283.2017.05.015

Previous Articles     Next Articles

Effects of Microbial Fertilizer on Soil Characteristics and Root Exudates of Oats in Saline-alkali Land

Lu Peina,Liu Jinghui,Zhao Baoping,Li Lijun,Lei Xuefeng,Zhang Fengyi   

  1. Agricultural College,Inner Mongolia Agricultural University,Hohhot 010019,Inner Mongolia,China
  • Received:2017-07-04 Revised:2017-08-22 Online:2017-10-15 Published:2018-08-26
  • Contact: Jinghui Liu

Abstract:

Different salt resistance oats varieties Neiyan No.5 and Baiyan No.2 were used as test materials, and microbial fertilizer and no microbial fertilizer two treatments were used to study the physicochemical and biological properties of soil and root exudates of oats in saline-alkali land. The results showed that microbial fertilizers could improve the contents of soluble sugar and oxalic acid in the rhizosphere soil and the non-rhizosphere soil. The contents of soluble sugar, oxalic acid, and malic acid in the rhizosphere soil were higher than that in the non-rhizosphere soil. The content of organic acids and content of SMB-N or surcease activity in root zone (horizontal distance 0-5cm, depth 0-10cm) were significantly positive correlation under different treatments. Microbial fertilizers could reduce soil pH and EC, but increase soil water content, soil microbial biomass and soil enzyme activities. The soil pH and EC in root zone were significantly positive correlation, and soil water content and SMB-N or soil enzyme activities showed significant positive correlation in different treatments.

Key words: Oats, Root exudates, Microbial fertilizer, Saline-alkali land, Soil characteristics

Fig.1

Effects of microbial fertilizer on the pH value of soil Different letters above columns mean significant among different treatments in different soil depth (P﹤0.05), the same below"

Fig.2

Effects of microbial fertilizer on soil conductivity"

Fig.3

Effects of microbial fertilizer on soil water content"

Table 1

Effects of microbial fertilizer on contents of SMB-C、SMB-N and soil enzyme activities"

水平距离(cm)
Horizontal distance
土层深度(cm)
Depth of soil
处理
Treatment
SMB-C含量
(mg/kg)
SMB-C content
SMB-N含量
(mg/kg)
SMB-N content
酶活性 Enzyme activity
U1
[0.1mol/L KMnO4mL/(g·30min)]
U2
[NH4-Nmg/(g·24h)]
U3
[glucose mg/(g·24h)]
U4
[phenol mg/(g·24h)]
0~5 0~10 A 116.58±38.45bcd 1.85±1.80cd 11.15±0.99d 0.65±0.08bc 19.01±4.05a 9.22±1.27ab
AM 140.26±34.34abc 3.59±1.35abc 12.42±1.25abcd 0.68±0.18bc 21.87±9.64a 10.26±2.39a
B 89.21±36.93d 2.52±1.17bcd 12.19±1.26bcd 0.66±0.09bc 19.51±1.40abc 8.63±0.51b
BM 154.74±8.86ab 2.65±0.40bcd 12.71±1.14abcd 0.69±0.14bc 20.56±0.74abc 9.12±0.60ab
10~20 A 150.26±19.34ab 4.20±1.09ab 12.79±0.76abcd 0.65±0.05bc 22.47±4.94ab 8.46±0.22bc
AM 166.58±43.86a 4.92±2.86a 14.07±2.63ab 0.67±0.01bc 25.36±2.67a 9.72±1.11ab
B 93.16±10.61d 2.38±1.97bcd 13.71±0.94abc 0.88±0.17ab 22.44±4.50a 9.39±0.71ab
BM 93.42±22.55d 4.12±1.49ab 13.85±0.70abc 0.96±0.22a 23.29±4.29a 9.90±1.69ab
20~40 A 93.42±46.84d 0.86±0.68d 12.05±0.99bcd 0.44±0.17c 16.20±4.28c 6.90±0.02d
AM 115.53±11.93bcd 1.03±0.58d 13.47±2.83abc 0.60±0.26c 18.33±5.28abc 7.08±0.54cd
B 101.05±29.99cd 1.05±0.94d 11.91±0.72cd 0.48±0.31c 15.56±1.82bc 6.55±0.50d
BM 122.11±8.80bcd 1.45±0.85d 14.26±0.92a 0.57±0.22c 17.76±0.71abc 6.75±0.71d
5~10 0~10 A 59.65±27.56de 0.58±0.47de 11.23±0.23b 0.51±0.15bc 12.37±6.94abc 8.53±0.21b
AM 68.86±16.13cde 2.18±1.25bc 11.53±0.39ab 0.65±0.07ab 13.55±8.61ab 8.60±0.66b
B 101.67±26.20abcd 1.24±0.23cde 11.87±0.93ab 0.66±0.02ab 20.42±2.88ab 9.10±0.42ab
BM 130.61±36.92a 1.67±0.75cde 12.54±1.38ab 0.66±0.10ab 26.86±10.82a 9.39±1.71ab
10~20 A 40.79±53.16e 1.77±0.69cd 12.13±0.94ab 0.74±0.15a 11.45±8.51abc 9.81±0.55a
AM 120.00±30.17ab 2.29±1.88abc 12.97±1.32a 0.75±0.09a 19.60±2.26ab 9.87±0.55a
B 65.53±31.27de 3.14±0.36ab 11.84±1.33ab 0.73±0.13a 19.80±1.59abc 9.01±0.66ab
BM 114.74±21.52abc 3.52±0.45a 12.88±1.13a 0.77±0.10a 21.49±2.30ab 9.37±1.06ab
20~40 A 67.11±47.49de 0.40±0.13e 11.41±1.67ab 0.34±0.25c 12.94±6.30d 6.42±0.36c
AM 85.79±28.64abcde 1.68±1.55cd 12.12±0.53ab 0.49±0.08bc 15.12±7.88bcd 6.58±0.21c
B 75.88±16.08bcde 1.34±0.49cde 11.29±1.68b 0.39±0.16c 11.24±1.28cd 6.56±0.57c
BM 106.05±31.64abcd 1.79±0.15cd 12.78±0.29ab 0.40±0.23c 11.63±1.33cd 7.36±0.87c

Table 2

Effects of microbial fertilizer on root exudates of different salt resistance oats"

处理Treatment 可溶性糖(mg/g)
Soluble sugar
有机酸Organic acid (μg/g)
草酸Oxalic acid 苹果酸Malic acid 总有机酸Total organic acid
根际土Rhizosphere soil A 0.155 213.65 16.06 229.71
AM 0.169 334.43 17.53 351.96
B 0.104 311.81 12.06 323.87
BM 0.111 527.79 9.86 537.65
非根际土Non-rhizosphere soil A 0.145 6.59 10.74 17.33
AM 0.159 7.21 12.73 19.94
B 0.097 7.31 11.80 19.11
BM 0.104 7.54 - 7.54

Table 3

Correlation analysis of physicochemical and biological properties of soil"

指标Index pH EC SWC SMB-C SMB-N U1 U2 U3 U4
pH -1
EC -0.817** -1
SWC -0.176 -0.362 1
SMB-C -0.236 -0.339 0.204 1
SMB-N -0.424* -0.540** 0.561** 0.532** 1
U1 -0.030 -0.142 0.410* 0.562** 0.511** 1
U2 -0.539** -0.621** 0.711** 0.196 0.648** 0.492** 1
U3 -0.412* -0.560** 0.588** 0.701** 0.659** 0.567** 0.665** 1
U4 -0.798** -0.828** 0.481** 0.258 0.639** 0.228 0.826** 0.596** 1

Table 4

Correlation analysis of root exudates of oats and biological properties of soil"

指标Index SMB-C SMB-N U1 U2 U3 U4
草酸Oxalic acid 0.421 0.995** 0.649 0.636 0.962** 0.776
总有机酸Total organic acid 0.442 0.997** 0.676 0.664 0.969** 0.765
[1] 王波, 宋凤斌 . 燕麦对盐碱胁迫的反应和适应性. 生态环境, 2006,15(3):625-629.
[2] 杨科, 张保军, 胡银岗 , 等. 混合盐碱胁迫对燕麦种子萌发及幼苗生理生化特性的影响. 干旱地区农业研究, 2009,27(3):188-192.
[3] 李倩, 刘景辉, 武俊英 , 等. 种植模式对盐碱地燕麦生长发育的而影响.麦类作物学报. 2008,28(4):693-673.
doi: 10.7606/j.issn.1009-1041.2008.04.150
[4] 刘欢, 赵桂琴 . 燕麦抗逆性研究进展.草原与草坪, 2007(6):63-67.
[5] 牟金明, 李万辉 . 根系分泌物及其作用. 吉林农业大学学报, 1996,18(4):114-118.
[6] 洪常青, 聂艳丽 . 根系分泌物及其在植物营养中的作用. 生态环境, 2003,12(4):508-511.
[7] 刘军, 温学森, 郎爱东 . 植物根系分泌物成分及其作用的研究进展. 食品与药品, 2007,9(3):63-65.
[8] 申建波, 张福锁 . 根分泌物的生态效应. 中国农业科技导报, 1999,1(4):21-27.
doi: 10.3969/j.issn.1008-0864.1999.04.005
[9] 朱丽霞, 章家恩, 刘文高 . 根系分泌物与根际微生物相互作用研究综述. 生态环境, 2003,12(1):102-105.
[10] 葛均青, 于贤昌, 王竹红 . 菌肥效应及其应用展望. 中国生态农业学报, 2003,11(3):87-88.
[11] 严慧峻, 逄焕成, 李玉义 , 等. 微生物复混肥对盐碱土及白菜品质改良的影响. 中国农学通报, 2008,24(12):270-273.
[12] 逄焕成, 李玉义, 严慧峻 , 等. 微生物菌剂对盐碱土理化和生物性状影响的研究. 农业环境科学学报, 2009,28(5):951-955.
[13] 于占东, 宋述尧 . 稻草配施生物菌剂对大棚连作土壤的改良作用. 农业工程学报, 2003,19(1):177-179.
[14] 李云玲, 谢英荷, 洪坚平 . 生物菌肥在不同水分条件下对土壤微生物生物量碳、氮的影响. 应用与环境生物学报, 2004,10(6):790-793.
[15] 杨玉新, 王纯立, 谢志刚 , 等. 微生物肥对土壤微生物种群数量的影响. 新疆农业科学, 2008,45(S1):169-171.
[16] 李玉奇 . 微生物菌肥对温室黄瓜生长、产量及品质的影响. 中国农学通报, 2012,28(1):259-263.
doi: 10.3969/j.issn.1000-6850.2012.01.050
[17] 申建波, 毛如达 . 植物营养研究方法.北京: 中国农业大学出版社, 2011: 392.
[18] 王瑛, 孟亚利, 陈兵林 , 等. 麦棉套作棉花根际非根际土壤微生物和土壤养分. 生态学报, 2006,26(10):3485-3490.
[19] 徐卫红, 王宏信, 刘怀 , 等. Zn、Cd单一及复合污染对黑麦草根分泌物及根际Zn、Cd形态的影响. 环境科学, 2007,28(9):2089-2095.
[20] 中华人民共和国农业行业标准.NY/T 1278 -2007. 蔬菜及其制品中可溶性糖的测定-铜还原碘量法.中华人民共和国农业部发布,2007-04-17.
[21] 中国科学院南京土壤研究所. 土壤理化分析.上海: 上海科学技术出版社, 1978.
[22] 关松荫 . 土壤酶及其研究法.北京: 农业出版社, 1986: 274-279.
[23] 吴金水 . 土壤微生物生物量测定方法及其应用.北京: 气象出版社, 2006.
[24] 王继红, 刘景双, 于君宝 , 等. 氮磷肥对黑土玉米农田生态系统土壤微生物量碳、氮的影响. 水土保持学报, 2004,18(1):35-38.
doi: 10.3321/j.issn:1009-2242.2004.01.009
[25] 杨万勤, 王开运 . 森林土壤酶的研究进展. 林业科学, 2004,40(2):152-159.
doi: 10.11707/j.1001-7488.20040227
[26] 张为政, 祝廷成, 张镇媛 . 作物茬口对土壤酶活性和微生物的影响.土壤肥料, 1994(5):12-14.
[27] 孙建, 刘苗, 李立军 , 等. 免耕与留茬对土壤微生物量C、N及酶活性的影响. 生态学报, 2009,29(10):5508-5515.
doi: 10.3321/j.issn:1000-0933.2009.10.040
[28] Chróst R J, Siuda W, Hałemejko G Z . Longterm studies on alkaline phosphatase activity(APA) in a lake with fish-aquaculture in relation to lake eutrophication and phosphorus cycle. Archiv Fur Hydrobiologie, 1984,70(1):1-32.
[29] Köster M, Dahlke S , Meyer-Reil L A.Microbiological studies along a gradient of eutrophication in a shallow coastal inlet in the southern Baltic Sea ( Nordrüegensche Bodden). Marine Ecology Progress, 1997,152(1):27-39.
doi: 10.3354/meps152027
[30] 宋玉珍 . 菌肥在松嫩平原盐碱地造林中的应用研究. 哈尔滨:东北林业大学, 2009.
[31] 梁菊蓉 . 不同灌溉方式对新疆盐碱地土壤理化性质和微生物特性的影响.节水灌溉, 2012(7):18-20.
[32] 徐阳春, 沈其荣, 冉炜 . 长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响. 土壤学报, 2002,39(1):89-96.
doi: 10.11766/trxb200103110113
[33] Xiao T, Chang S, Richard K . Soil compaction and forest floor removal reduced microbial biomass and enzyme activities in a boreal aspen forest soil. Biology & Fertility of Soils, 2008,44(3):471-479.
[34] 焦婷, 常根柱, 周学辉 , 等. 高寒草甸草场不同载畜量下土壤酶与土壤肥力的关系. 草业学报, 2009,18(6):98-104.
doi: 10.11686/cyxb20090613
[35] 李传荣, 许景伟, 宋海燕 , 等. 黄河三角洲滩地不同造林模式的土壤酶活性. 植物生态学报, 2006,30(5):802-809.
[36] 左智天, 田昆, 向仕敏 , 等. 澜沧江上游不同土地利用类型土壤氮含量与土壤酶活性研究. 水土保持研究, 2009,16(4):280-285.
[37] 刘艳, 李波, 孙文涛 , 等. 生物有机肥对盐碱地春玉米生理特性及产量的影响.作物杂志, 2017(2):1-5.
doi: 10.16035/j.issn.1001-7283.2017.02.017
[38] Bais H P, Park S W, Weir T L , et al. How plants communicate using the underground information superhighway. Trends in Plant Science, 2004,9(1):26-32.
doi: 10.1016/j.tplants.2003.11.008 pmid: 14729216
[39] Bais H P, Weir T L, Perry I U , et al. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 2006,57(1):233-266.
doi: 10.1146/annurev.arplant.57.032905.105159 pmid: 16669762
[40] Weir T I, Parks W, Vivanco J M . Biochemical and physiological mechanisms mediated by allelochemicals. Current Opinion in Plant Biology, 2004,7(4):472-479.
doi: 10.1016/j.pbi.2004.05.007
[41] Broeckling C D, Broz A K, Joy B , et al. Root exudates regulate soil fungal community composition and diversity. Applied & Environment Microbiology, 2007,74(3):738-744.
doi: 10.1128/AEM.02188-07 pmid: 2227741
[42] 王树起, 韩晓增, 乔云发 . 根系分泌物的化感作用及其对土壤微生物的影响. 土壤通报, 2007,38(6):1219-1226.
[43] 李明刚, 但野利秋 . 分泌性磷酸酶及有机酸于根际分布状况的初步研究. 烟台大学学报(自然科学与工程版), 1998,11(1):41-47.
[44] Somers E, Vanderleyden J, Srinivasan M . Rhizosphere bacterial signalling;a love parade beneath our feet. Critical Reviews in Microbiology, 2004,30(4):205-240.
doi: 10.1080/10408410490468786 pmid: 15646398
[45] 李凤霞, 王学琴, 郭永忠 . 不同改良措施对银川平原盐碱地土壤性质及酶活性的影响. 水土保持研究, 2012,19(6):13-18.
[46] Wan F X, Chen P . Soil enzyme activities under agroforestry systems in northern Jiangsu Province. Forestry Studies in China, 2004,6(2):21-26.
doi: 10.1007/s11632-004-0015-3
[47] 弋良朋, 马健, 李彦 . 荒漠盐生植物根际土壤酶活性的变化. 中国生态农业学报, 2009,17(3):500-505.
[48] 毛志刚, 谷孝鸿, 刘金娥 , 等. 盐城海滨湿地盐沼植被及农作物下土壤酶活性特征. 生态学报, 2010,30(18):5043-5049.
[49] 朱静平, 程凯 . 3种水培植物根系分泌的有机酸对氮循环菌的影响. 环境工程学报, 2011,5(9):2139-2143.
[50] 罗世琼, 杨雪鸥, 林俊青 . 施肥对烤烟土壤微生物群落结构多样性及蔗糖酶活性的影响. 贵州农业科学, 2013,41(7):124-128.
doi: 10.3969/j.issn.1001-3601.2013.07.034
[1] Juan Wang,Yinfan Li,Xiuzhi Liang,Minna Zheng. Morphological Diversity of Main Oat Germplasm Resources in Northern China [J]. Crops, 2017, 33(4): 27-32.
[2] Haiyan Li,Deli Cai,Jingsheng Chen,Yuxi Duan,Lijie Chen,Yingyu Shang. The Influence of Resistant and Susceptible Soybean Germplasm on Growth Dynamic Changes of Soybean Cyst Nematode Race 3(SCN3) [J]. Crops, 2017, 33(1): 144-149.
[3] Youjun Chen,Qingping Zhou,Jian Sun,Lihua Tian. Comparison of Lodging Resistance among Different Oats (Avena sativa L.) [J]. Crops, 2016, 32(5): 44-49.
[4] Jinggang Xu,Tao Sun,Song Li. Application of Microbial Fertilizers in Agricultural Production of China [J]. Crops, 2016, 32(1): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .