Crops ›› 2018, Vol. 34 ›› Issue (6): 36-42.doi: 10.16035/j.issn.1001-7283.2018.06.006

Previous Articles     Next Articles

Breeding Fragrant Rice Zhengdao19 Using CRISPR/Cas9 Mediated Gene Editing Technology

Wang Fuhua1,Xue Huazheng1,Wang Ya1,Wang Shengxuan1,Wang Yuetao1,Fu Jing1,Yang Wenbo1,Bai Tao1,Li Junzou2,Yin Haiqing1   

  1. 1 Institute of Cereal Crop, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
    2 Agronomy College, Henan Agricultural University, Zhengzhou 450002, Henan, China
  • Received:2018-08-24 Revised:2018-11-06 Online:2018-12-15 Published:2018-12-06

Abstract:

Fragrant rice is favored by Chinese consumers. In this study, Fragrance rice mutant lines were developed with CRISPR/CAS9 by editing gene Badh2, a key gene determining rice fragrance of Zhengdao 19, a rice variety suitable for direct-sowing as transformation donor. Totally, 9 fragrant mutants were obtained out of 11 positive transgenic T0 plant individuals. And twenty-two individuals of six T1 lines were confirmed by editing region sequencing. Seven mutation types were discovered, including five kinds of delete, two kinds of insert. Totally, three biallelic mutation lines (T1-2, T1-3 and T1-7) and ten homozygous mutants were found. Meanwhile sequencing twenty-eight T2 individuals revealed twenty-one homozygous mutants. Utilization of selectable marker screening to T2 progeny (from T1 lines T1-2, T1-6 and T1-7) eight marker-free homozygous mutants were found, and three were from T1-2, five from T1-7, respectively. Compared with the wild type, the 2-acetyl-1-pyrroline content increased from 0.003μg/g (in the wild type) to 1.259±0.072μg/g for T0 mutants planted in field, from 0.002μg/g (in the wild type) to 0.537±0.111μg/g for T1 mutants planted in greenhouse, without significant alternation in mainly agronomic traits. All selected marker-free homozygous individuals was available to be applied in germplasm enhancement and fragrance rice breeding practice.

Key words: Rice, Zhengdao19, Fragrance, Badh2, CRISPR/CAS9

Fig.1

Target region sequencing & identification Sequence in bracket indicate target region,Sequences in box are primer pair for target region screening"

Table 1

Primer pairs used in this study"

引物名称Primer name 引物序列Primer sequence 用途Usage
Badh identify_F CCATCGGTACCCTCCTCTTC 靶点序列扩增Amplification of target region
Badh_identif_R ATCGATCGATTTGGGGCTCA
Vector_identify_F CGATTCCGGAAGTGCTTGAC 载体验证 Vector identification
Vector_identify_R CGTCTGCTGCTCCATACAAG

Table 2

Analysis of mutation in target sequences"

T1株系号
No. of
T1 line
T1测序株Sequenced of T1 T2测序株Sequenced of T2 靶点序列
Target sequence
突变情况
Mutation
总株数/突变体
Total/Mutant
纯合/杂合
Homozygote/Heterzygote
in mutants
总株数/突变体
Total/Mutant
纯合/杂合
Homozygote/Heterzygote
in mutants
WT CAAGTACCTCCGCGCAATCGCGGCC
T1-2 3/3 0/3 6/6 6/0 CAAGTACCTCCGCGC--TCGCGGCC -2
CAAGTACCTCCGCG-----CGGCC -5
T1-3 3/3 2/1 6/6 3/3 CAAGTACCTCCGCG--------GCC -8
CAAGTACCTCCGCGCA-TCGCGGCC -1
T1-6 5/4 2/2 5/4 2/2 CAAGTACCTCCGCGCAAaTCGCGGCC +1
T1-7 5/5 3/2 5/5 5/0 CAAGTACCTCCGC------------ -12
CAAGTACCTCCGCGCAAaTCGCGGCC +1
T1-8 3/2 0/2 3/3 3/0 CAAGTACCTCCGCGCAAacacttgat +9
T1-9 3/3 3/0 3/2 2/0 CAAGTACCTCCGCGCAAaTCGCGGCC +1
小计Total 22/20 10/10 28/26 21/5

Fig.2

Genotype of edited site and vector segregation in T1 & T2 generation"

Fig.3

2-acetyl-1-pyrroline (2-AP) content of T0 and T1 lines **: Significant difference at P=0.01"

Fig.4

Phenotype and performance of agronomic traits related to yield in desirable T1 line"

[1] 赵步洪, 戴正元, 谢成林 , 等. 直播水稻的研究与应用进展及发展策略. 江苏农业科学, 2010,38(5):13-15.
[2] 王才林, 张亚东, 朱镇 , 等. 水稻优质抗病高产育种的研究与实践. 江苏农业学报, 2012,28(5):921-927.
[3] Buttery R G, Ling L C, Juliano B O , et al. Cooked rice aroma and 2-acetyl-1-pyrroline. Journal of Agricultural and Food Chemistry, 1983,31:823-826.
doi: 10.1021/jf00118a036
[4] Ali S S, Jafri S J H, Khan M G ,et al. Inheritance studies for aroma in two aromatic varieties of Pakistan. IRRN, 1993,18:65.
[5] Ahn S N, Bollisch C N, Tanksley S D . RFLP tagging of a gene for aroma in rice. Theoretical and Applied Genetics, 1992,84:825-828.
doi: 10.1007/BF00227391 pmid: 24201481
[6] Lorieux M, Petrov M, Huang N , et al. Aroma in rice:geneticanalysis of a quantitative trait. Theoretical and Applied Genetics, 1996,93:1145-1151.
doi: 10.1007/BF00230138 pmid: 24162494
[7] Jin Q, Waters D, Cordeiro G M , et al. A single nucleotide polymorphism (SNP) marker linked to the fragrance gene in rice (Oryza sativa L.). Plant Science, 2003,165:359-364.
doi: 10.1016/S0168-9452(03)00195-X
[8] Wanchana S, Kamolsukyungyoung W, Ruengphayak S , et al. A rapid construction of a physical contig across a 4.5 cM region for rice grain aroma facilitates marker enrichment for positional cloning. Science Asia, 2005,31:299-306.
doi: 10.2306/scienceasia1513-1874.2005.31.299
[9] 李金华, 王丰, 柳武革 , 等. 水稻粤丰B的香味遗传分析与SSR标记定位. 分子植物育种, 2006,4(1):54-58.
doi: 10.3969/j.issn.1672-416X.2006.01.010
[10] 任鄄胜, 肖培村, 陈勇 , 等. 几个香稻保持系香味的遗传研究. 种子, 2004,23(12):24-28.
doi: 10.3969/j.issn.1001-4705.2004.12.007
[11] 张涛, 张红宇, 蒋开锋 , 等. 水稻香味基因的精细定位. 分子植物育种, 2008,6(6):1038-1044.
doi: 10.3969/j.issn.1672-416X.2008.06.002
[12] Bradbury L M T, Fitzgerald T L, Henry R J , et al. The gene for fragrance in rice. Plant Biotechnology Journal, 2005,3:363-370.
doi: 10.1111/j.1467-7652.2005.00131.x pmid: 17129318
[13] Bradbury L M T, Gillies S A, Brushett D J , et al. Inactivation of anamino-aldehyde dehydrogenase is responsible for fragrance in rice. Plant Molecular Biology, 2008,68:439-449.
doi: 10.1007/s11103-008-9381-x pmid: 18704694
[14] Chen S, Yang Y, Shi W , et al. Badh2,encoding betaine aldehydedehydrogenase,inhibits the biosynthesis of 2-acetyl-1-pyrroline,amajor component inrice fragrance. Plant Cell, 2008,20:1850-1861.
doi: 10.1105/tpc.108.058917
[15] Shi W W, Yang Y, Chen S H , et al. Discovery of a new fragranceallele and the development of functional markers for the breeding of fragrant rice varieties. Molecular Breeding, 2008,22(2):185-192.
doi: 10.1007/s11032-008-9165-7
[16] 姜达, 卢小勇, 王延春 , 等. 27种香稻品种Badh2突变位点序列的分析. 分子植物育种, 2015,13(2):276-280.
doi: 10.13271/j.mpb.013.000276
[17] Niu X L, Tang W, Huang W Z , et al. RNAi-directed down regulation of OsBadh2. results in aroma (2-acetyl-1-pyrroline) production in rice (Oryza sativa L.). BMC Plant Biology, 2008,8:100.
doi: 10.1186/1471-2229-8-100 pmid: 2588449
[18] Chen M L, Wei X J, Shao G N , et al. Fragrance of the rice grain achieved via artificial micro RNA-induced down-regulation of OsBadh2. Plant Breeding, 2012,131:584-590.
doi: 10.1111/j.1439-0523.2012.01989.x
[19] Shan Q W, Zhang Y, Chen K L . Creation of fragrant rice by targeted knockout of the OsBadh2 gene using TALEN technology. Plant Biotechnology Journal, 2015,13:791-800.
doi: 10.1111/pbi.12312 pmid: 25599829
[20] 邵高能, 谢黎虹, 焦桂爱 , 等. 利用CRISPR/CAS9技术编辑水稻香味基因Badh2. 中国水稻科学, 2017,31(2):216-222.
doi: 10.16819/j.1001-7216.2017.6098
[21] 周文甲, 田晓杰, 任月坤 , 等. 利用CRISPR/CAS9 创造早熟香味水稻. 土壤与作物, 2017,6(2):146-152.
[22] Xing H, Dong L, Wang Z , et al. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biology, 2014,14(1):327.
doi: 10.1186/s12870-014-0327-y pmid: 25432517
[23] 李林峰, 李军 . 香稻种质资源及研究进展. 上海农学院学报, 1997,1(4):305-309.
[24] Bradbury L M T, Henry R J, Jin Q S , et al. A perfect marker for fragrance genotyping in rice. Molecular Breeding, 2005,16(4):279-283.
doi: 10.1007/s11032-005-0776-y
[25] 朱映东, 时亚琼, 周锋利 , 等. 分子标记辅助选育香型巨胚水稻. 上海师范大学学报(自然科学版), 2013,42(6):423-428.
doi: 10.3969/j.issn.1000-5137.2013.06.009
[26] 许言福, 黄菊, 王英存 , 等. 两种筛选水稻BADH2-E2类型香味基因分子标记的建立. 分子植物育种, 2015(11):2441-2445.
[27] 张羽 . 水稻香味基因特异标记的构建. 江苏农业科学, 2011,39(4):43-47.
doi: 10.3969/j.issn.1002-1302.2011.04.015
[28] 闫影, 诸光明, 张丽霞 , 等. 水稻香味基因分子标记的开发及应用. 西北植物学报, 2015,35(2):269-274.
doi: 10.7606/j.issn.1000-4025.2015.02.0269
[29] 张现伟, 王静, 唐永群 , 等. 香稻香味遗传育种及其保香栽培. 基因组学与应用生物学, 2010,29(3):550-555.
doi: 10.3969/gab.029.000550
[30] 唐湘如, 吴密 . 施用锌、铁、镧肥对香稻米质和产量的影响. 杂交水稻, 2007,22(2):69-72.
doi: 10.3969/j.issn.1005-3956.2007.02.025
[31] 孙树侠, 刘书城 , 水稻的香味及N、Zn肥对香味效应的研究. 作物学报, 1991,17(6):430-435.
[32] 严力蛟 . 香米的香气研究综述. 中国稻米, 1995,1(4):27-29.
[1] Cui Yanni,Zhan Junhui,Yan Pengqi,Ke Wenjing,Song Ningyuan,Zhang Zhongnan,Wang Liuhang,Huang Yan,Zhang Jing,Zhao Quanzhi. Effects of Different Application Proportion of Nitrogen Fertilizer on Grain-Filling Characteristics and Yield of Hybrid Indica Rice in Southern Henan Province [J]. Crops, 2018, 34(6): 103-109.
[2] Zhao Jinxing,Zhou Wei,Zhan Yingce,Li Yongjie,Gao Hongbo,He Songyu,Zhang Yuxian,Zhang Mingcong. Effects of a New Soil Ameliorants on Soil Physical Properties and Yield of Rice in Saline Meadow Soil [J]. Crops, 2018, 34(6): 138-143.
[3] Ji Shengdong,Li Peng,Li Jiangwei,Song Liumin,Liu Miaomiao,Gao Kuanglong,Yin Haiqing. Analysis of Peroxidase Zymogram and Genetic Effects between Rice Lines and Their Parents During Grain Filling [J]. Crops, 2018, 34(5): 17-20.
[4] Ma Mengli,Zheng Yun,Zhou Xiaomei,Zhang Tingting,Zhang Xiaoqian,Lu Bingyue. Genetic Diversity Analysis of Red Rice from Hani’s Terraced Fields in Yunnan Province [J]. Crops, 2018, 34(5): 21-26.
[5] Chen Yingying,Wangxu Yiling,Zhu Yuhan,Wu Wei,Liu Tao,Sun Chengming. Hyperspectral Estimation of Nitrogen Content in Rice Panicle [J]. Crops, 2018, 34(5): 116-120.
[6] Xingchuan Zhang, Wenxuan Huang, Kuanyu Zhu, Zhiqin Wang, Jianchang Yang. Effects of Nitrogen Rates on the Nitrogen Use Efficiency and Agronomic Traits of Different Rice Cultivars [J]. Crops, 2018, 34(4): 69-78.
[7] Xiaoyu Liang, Chunyu Lin, Shumei Ma, Yang Wang. Mining Elite Alleles for Germination Ability in Rice (Oryza sativa L.) under Salt and Alkaline Stress [J]. Crops, 2018, 34(4): 48-52.
[8] Bo Zeng. Renovation of Main Cultivated Rice Varieties in China in the Past 30 Years [J]. Crops, 2018, 34(3): 1-7.
[9] Chen He,Guiping Zheng,Haicheng Zhao,Liqiang Chen,Hongyu Li,Yandong Lü,Jiang Song. Effects of Increasing Humic Acid but Reducing Fertilization on Panicle Traits and Yield of Rice in Saline-Alkali Soil [J]. Crops, 2018, 34(3): 129-134.
[10] Yong Cui. The Research Progress of Water-Dry Rotation Methods in Paddy Field [J]. Crops, 2018, 34(3): 8-14.
[11] Zhiqiang Tang,Liqiang Dong,Rui Li,Liying Zhang,Na He,Yuedong Li. Effects of Nitrogen and Soil Type on Seedling Quality and Nutrient Absorption in Rice [J]. Crops, 2018, 34(3): 141-147.
[12] Lili Zhang,Yizhou Zhao,Xin Li,Ting Mao,Yan Liu,Zhan Zhang,Shanjun Ni,Fucai Liu. Mutant Analysis on Quality Trait of Different Japonica Rice Progenies Induced by 60Co-γ Ray Irradiation [J]. Crops, 2018, 34(3): 51-56.
[13] Li Zhang,Zantang Li,Shiyin Wang,Yanchao Ma,Yang Dongfang,Xueyong Li,Jiang Xu. Physiological and Genetic Analysis of Rice Mutant osnad1 Defective in Nitrogen Absorption [J]. Crops, 2018, 34(3): 68-76.
[14] Menjun Duan,Yunzi Wu,Yucong Tian,Yongwu Liu,Zhangyong Liu,Fu Chen,Tao Jin. Comparision of Yield and Quality among Different Ratooning Rice Varieties [J]. Crops, 2018, 34(2): 61-67.
[15] Bo Zeng,Shixian Sun,Jie Wang. Registration of Main Rice Varieties and Its Application in Recent 30 Years in China [J]. Crops, 2018, 34(2): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!