Crops ›› 2018, Vol. 34 ›› Issue (6): 43-47.doi: 10.16035/j.issn.1001-7283.2018.06.007

Previous Articles     Next Articles

Research of Regional Adaptability of Hull-less Barley Varieties in the Qinghai-Tibetan Plateau

Zhu Mingxia1,Bai Ting1,Qiang Xiaolin2,Wang Jianping3,Xu Jianye4,Ma Changshou5,Min Kang6,Tao Mingjuan7,Yang Kaijun8   

  1. 1 Institute of Food Science & Technology, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850032, Tibet, China
    2 Agricultural Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850032, Tibet, China
    3 Changdu Institute of Agricultural Sciences, Changdu 854000, Tibet, China
    4 Hainan Institute of Agricultural Sciences, Gonghe 813000, Qinghai, China
    5 Haibei Institute of Agricultural Sciences, Menyuan 810300, Qinghai, China
    6 Diqing Institute of Agricultural Sciences, Diqing 674400, Yunnan, China
    7 Aba Institute of Agricultural Sciences, Aba 624600, Sichuan, China
    8 Ganzi Institute of Agricultural Sciences, Ganzi 626000, Sichuan, China
  • Received:2018-09-12 Revised:2018-10-09 Online:2018-12-15 Published:2018-12-06

Abstract:

In order to breed the hull-less barley varieties which adapted to the Qinghai-Tibetan Plateau, a trial of 12 regions was carried out to evaluate the performance of 15 new hull-less barley varieties in 2010-2012. The results showed that the average yield of Ganqing 5, Ganqing 4 and Kangqing 7 was 4 804.5, 4 741.5 and 4 470.0kg/hm 2, which increased by 10.3%, 8.8% and 2.6% compared with the CK, respectively. The three hull-less barley varieties showed wide adaptability and good comprehensive performance, which could promote for cultivation. The average yield of short-white barley and long-black barley was 3 316.5kg/hm 2 and 2 971.5kg/hm 2, respectively, which reduced by 23.9% and 31.8% compared with the CK. This two varieties had strong regional selectivity except for Diqing area.

Key words: Qinghai-Tibetan Plateau, Hull-less barley, Adaptability

Table 1

Fifteen highland barley varieties and sources"

序号Code 品种Variety 品种来源Variety source 序号Code 品种Variety 品种来源Variety source
QG01 藏青25 西藏自治区农牧科学院农业研究所 QG09 甘青5号 甘肃省甘南州农业科学研究所
QG02 藏青690 西藏自治区农牧科学院农业研究所 QG10 阿青5号 四川省阿坝州农业科学技术研究所
QG03 喜马拉22 西藏日喀则市农业科学研究所 QG11 阿青6号 四川省阿坝州农业科学技术研究所
QG04 昆仑12 青海省农林科学院作物研究所 QG12 康青7号 四川省甘孜州农业科学研究所
QG05 昆仑13 青海省农林科学院作物研究所 QG13 康青8号 四川省甘孜州农业科学研究所
QG06 北青7号 青海省海北州农业科学研究所 QG14 短白青稞 云南省迪庆州农业科学研究所
QG07 北青8号 青海省海北州农业科学研究所 QG15 长黑青稞 云南省迪庆州农业科学研究所
QG08 甘青4号 甘肃省甘南州农业科学研究所 QG16 CK

Table 2

Twelve pilot climate conditions and the control varieties"

试点
Pilot
海拔(m)
Altitude
经纬度
Longitude and latitude
年平均气温(℃)
Annual mean temperature
年平均降水量(mm)
Annual average rainfall
无霜期(d)
Frost-free period
对照品种
Control variety
西藏日喀则Rikaze, Tibet 3 830 88°03′E, 29°07′N 6.3 420 120 喜拉19
西藏拉萨Lhasa, Tibet 3 650 91°06′E, 29°36′N 7.4 450 110 藏青320
西藏昌都Changdu, Tibet 3 400 93°06′E, 28°05′N 7.8 480 125 藏青320
云南香格里拉Xianggelila, Yunnan 3 200 99°44′E, 27°05′N 5.4 600 120 本地黑六棱
海南共和Gonghe, Hainan 2 930 100°37′E, 36°16′N 2.3 275 88 柴青1号
甘肃天祝Tianzhu, Gansu 2 700 102°07′E, 36°31′N 0.0 400 100 北青5号
甘肃合作Hezuo, Gansu 2 930 103°34′E, 34°31′N 2.1 570 110 肚里黄
甘肃德令哈Delingha, Gansu 2 980 97°22′E, 37°22′N 4.5 170 84 北青5号
青海门源Menyuan, Qinghai 2 860 100°52′E, 36°58′N 0.5 540 120 北青6号
四川康定Kangding Sichuan 3 450 101°48′E, 30°48′N 7.4 630 115 当地813
四川马尔康Maerkang Sichuan 2 960 102°09′E, 31°50′N 7.5 750 120 肚里黄
四川阿坝Aba, Sichuan 3 290 101°18′E, 32°18′N 3.3 710 110 肚里黄

Table 3

The average growth period and main economic characters of 15 highland barley varieties"

品种Variety 生育期(d)
Growth period
基本苗(万株/hm2)
Basic seedling
成穗数(万/hm2)
Ear number
株高(cm)
Plant height
穗长(cm)
Spike length
穗粒数
Grains per spike
单穗粒重(g)
Weight per ear
千粒重(g)
1000-grain weight
QG01 118.5 252.0 342.4 95.3 6.16 49.3 1.93 42.45
QG02 114.7 262.6 359.9 96.6 6.46 46.4 2.01 43.62
QG03 120.0 250.7 339.1 97.1 5.75 49.3 1.86 41.18
QG04 112.8 249.3 347.9 91.0 7.13 46.6 1.81 41.09
QG05 113.2 257.8 337.6 91.3 7.18 47.0 1.87 41.15
QG06 114.3 267.3 378.5 86.8 6.48 43.2 1.81 43.14
QG07 115.7 274.8 358.5 93.3 6.62 44.9 1.84 45.07
QG08 115.0 273.9 400.8 80.6 6.70 48.8 2.01 46.30
QG09 116.4 263.0 363.8 92.8 6.25 51.8 2.16 45.62
QG10 115.9 244.1 318.8 95.9 6.26 46.4 1.82 42.20
QG11 115.6 261.7 356.3 93.7 6.32 49.8 1.87 43.22
QG12 115.7 258.1 331.8 99.5 6.15 48.1 1.94 45.16
QG13 117.8 227.9 295.5 102.6 6.70 55.0 2.08 42.77
QG14 123.8 273.3 317.0 99.4 4.82 39.9 1.72 38.40
QG15 126.6 268.1 331.5 107.7 5.92 41.5 1.45 35.55
CK 118.0 272.5 380.5 95.3 6.34 47.8 1.95 43.79

Table 4

The average yield and synthetic evaluation of highland barley varieties"

品种
Variety
平均产量(kg/hm2)
Average yield
位次
Precedence
5%显著水平Significant level 增幅(%)
Increase
增产面(%)
Increase production surface
适应性Adaptability 综合评价
Synthetic evaluation
QG01 4 261.5 5 abcde -2.2 41.2 较特殊
QG02 4 057.5 10 cde -6.9 50.0 较广泛 较好
QG03 3 898.5 12 de -10.5 39.4 较特殊 较好
QG04 3 876.0 13 def -11.0 35.3 较特殊 较好
QG05 3 718.5 14 ef -14.6 28.1 较特殊 一般
QG06 4 249.5 6 abcde -2.4 30.3 较广泛
QG07 4 048.5 11 cde -7.1 37.5 较特殊 较好
QG08 4 741.5 2 ab 8.8 69.5 广泛 很好
QG09 4 804.5 1 a 10.3 72.5 广泛 很好
QG10 4 120.5 8 cde -5.4 37.0 较广泛 较好
QG11 4 074.0 9 cde -6.5 43.8 较广泛 较好
QG12 4 470.0 3 abc 2.6 66.7 广泛
QG13 4 219.5 7 bcde -3.1 51.7 较广泛
QG14 3 316.5 15 fg -23.9 15.6 特殊 较差
QG15 2 971.5 16 g -31.8 9.7 特殊 不好
CK 4 356.0 4 abcd

Table 5

Test combined yield variance"

变异来源Sources of variation SS df MS F Prob.
年份间Year 8.3300 1 8.3300 30.7563 0.0001
地点间Pilot 2 922.7730 11 265.7066 8.2044 0.0008
品种间Variety 236.3536 15 15.7569 17.0810 0.0001
地点×年份Pilot×Year 356.2452 11 32.3859 119.5762 0.0001
品种×年份Variety×Year 13.8373 15 0.9225 3.4060 0.0001
地点×品种Pilot×Variety 345.9264 165 2.0965 2.0011 0.0001
地点×品种×年份Pilot×Variety×Year 172.8701 165 1.0477 3.8683 0.0001
误差Deviation 195.0042 720 0.2708
总的Total 4 291.1820 1 151
[1] 蔡成勇, 朱首军, 周军 . 湟源县青稞立地土壤肥力特性与配方肥研制方案. 陕西林业科技, 2009(2):53-57.
[2] 冯继林, 甲干, 向明华 , 等. 藏区青稞考察与思考. 大麦与谷类科学, 2007,3(1):6-8.
doi: 10.3969/j.issn.1673-6486.2007.03.002
[3] 王建林, 胡单 . 西藏栽培大麦的遗传多样性中心. 植物生态学报, 2004,28(1):133-137.
doi: 10.17521/cjpe.2004.0019
[4] 马得泉, 李雁勤, 洛桑更堆 , 等. 西藏栽培大麦研究进展. 西藏科技, 1997(1):2-8.
[5] 朱印酒 . 西藏青稞资源与分布特征. 西藏大学学报(自然科学版), 2011,26(1):42-45.
[6] 卢良怒 . 中国大麦学. 北京: 中国农业出版社, 1995: 256-378.
[7] 强小林, 迟德钊, 冯继林 . 青藏高原区域青稞生产与发展现状. 西藏科技, 2008(3):11-17.
[8] 聂战声, 马其彪, 强小林 . 甘肃天祝青稞新品种区域适应性研究. 大麦与谷类科学, 2016,33(1):13-18.
[9] 郭铭, 闫栋, 马增科 , 等. 不同海拔地区对大麦农艺性状和品质的影响. 大麦与谷类科学, 2017,34(6):22-29.
[10] 孟亚雄, 赵向田, 马小乐 , 等. 海拔对啤酒大麦产量和品质的影响. 麦类作物学报, 2016,36(9):1258-1263.
doi: 10.7606/j.issn.1009-1041.2016.09.18
[11] 向莉, 柴淑珍, 何立明 , 等. 11个青稞品种不同生态区适应性试验. 大麦与谷类科学, 2016,33(1):27-29.
doi: 10.3969/j.issn.1673-6486.2016.01.008
[12] 丁耀录 . 甘南州青稞高产稳产新品种(系)筛选试验. 中国种业, 2012(1):50-52.
doi: 10.3969/j.issn.1671-895X.2012.01.023
[13] 吴昆仑 . 藏区青稞生产存在问题初探. 中国种业, 2008(3):41-42.
doi: 10.3969/j.issn.1671-895X.2008.03.020
[1] Wang Hanxia,Shan Fuhua,Tian Liping,Ma Qiaoyun,Zhao Changping,Zhang Fengting. Analysis of Stability and Adaptability of Winter Wheat Varieties in the Regional Trials of the Northern Wheat Region of China [J]. Crops, 2018, 34(5): 40-44.
[2] Wu Ruixiang,Yang Jianchun,Wang Liqin,Guo Xiujuan. Evaluation of the Adaptability of Flax Drought Resistance Based on Multiple Statistics Analysis [J]. Crops, 2018, 34(5): 10-16.
[3] Zheng Wang,Zhaobo Chen,Shengquan Zhang,Liping Ren,Xinhuan Gao,Zhijie Ye,Fengting Zhang. Feasibility Analysis of BS Series Hybrid Wheat Seed Production in Weinan of Shaanxi Province [J]. Crops, 2018, 34(3): 174-179.
[4] Xinhua Pang,Pengjin Zhu,Quanguang Zhou,Qinliang Tan,Chun Liang,Kewei Ou,Qiang Huang,Jingli Ou. Comparative Study of Introduced Sugarcane Varieties (Lines) in Guangxi [J]. Crops, 2016, 32(2): 73-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!