Crops ›› 2019, Vol. 35 ›› Issue (2): 20-27.doi: 10.16035/j.issn.1001-7283.2019.02.004

;

Previous Articles     Next Articles

Mechanism and Regulation in Spikelet Degeneration of Rice

Jiayan Sheng,Weiyang Zhang,Zhiqin Wang,Jianchang Yang   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Agricultural College,Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2018-11-01 Revised:2018-12-17 Online:2019-04-15 Published:2019-04-12
  • Contact: Jianchang Yang

Abstract:

The phenomenon of spikelet degeneration is very common in developmental processes of rice, which is a major factor limiting grain yield. Spikelet degeneration is regulated both by genetics, physiology and environment factors. In the previous work, rice spikelet degeneration quantitative trait loci (QTL) distributed on chromosomes 1 to 11 have been mapped using different genetic mapping populations, however, the contribution rate of these QTLs to spikelet degeneration is small; many candidate genes for spikelet degradation have been identified using mutant materials, and 3 of them were successfully cloned, but their molecular mechanism remains unclear. There are many explanations about the physiological and biochemical mechanism on the spikelet degeneration, including resource limitation, self-organization, and chemical regulation. However, convincing evidences are still lacking to support the hypotheses. Recent studies have shown that low content of brassinosteroids (BRs) and polyamines (PAs) and a high ethylene level in young rice panicles during panicle development especially during meiosis are closely associated with spikelet degeneration, and spikelet degeneration could be decreased through increases in BRs and PAs levels and the ratio of PAs to ethylene. Another important reason for rice spikelet degeneration is low levels of adenosine triphosphate (ATP) content and energy charge and excessive accumulation of reactive oxygen species (ROS), which lead to injury of membrane lipid peroxidation and programmed cell death in spikelets, resulting in spikelet degeneration. An appropriate increase in contents of nitrogen or BRs in plants during meiosis through cultivation practices can enhance energy and decrease ROS levels, and consequently reduce spikelet degeneration. Further investigations are needed to deeply understand the mechanism underlying spikelet degeneration and regulation approaches from the internal factors of spikelets (genetic factors, physiological and biochemical factors), from the whole plant level, cultivation practices and environmental conditions, so that the difficult scientific problem of spikelet degeneration may be solved.

Key words: Rice (Oryza sativa L.), Spikelet degeneration, Chemical regulation

Fig.1

Relationship between nitrogen content in plant at pollen mother cell meiosis and spikelet degeneration rate"

Fig.2

Relationship between brassinosteroid content in rice panicles at pollen mother cell meiosis and spikelet degeneration rate"

[1] 杨文钰, 屠乃美 . 作物栽培学各论: 南方本. 北京: 中国农业出版社, 2011.
[2] 凌启鸿 . 作物群体质量. 上海: 上海科学技术出版社, 2000.
[3] Vriet C, Russinova E, Reuzeaua C . Boosting crop yields with plant steroids. The Plant Cell, 2012,24(3):842-857.
doi: 10.1105/tpc.111.094912 pmid: 22438020
[4] 王志敏 . 作物产品器官退化和败育的机理与调控.//“10000个科学难题”农业科学编委会. 10000个科学难题: 农业科学卷. 北京: 科学出版社, 2011: 111-114.
[5] Yang J C, Zhang J H . Grain-filling problem in 'super' rice. Journal of Experimental Botany, 2010,61(1):1-5.
doi: 10.1093/jxb/erp348
[6] Tan C J, Sun Y J, Xu H S , et al. Identification of quantitative trait locus and epistatic interaction for degenerated spikelets on the top of panicle in rice. Plant Breeding, 2011,130(2):177-184.
doi: 10.1111/j.1439-0523.2010.01770.x
[7] Xie R J, Deng L, Jing L , et al. Recent advances in molecular events of fruit abscission. Biologia Plantarum, 2012,57(2):201-209.
doi: 10.1007/s10535-012-0282-0
[8] Itoh J, Nonomura K, Ikeda K , et al. Rice (Oryza sativa) plant development:From zygote to spikelet. Plant & Cell Physiology, 2005,46(1):23-47.
[9] Zhang C X, Feng B H, Chen T T , et al. Sugars,antioxidant enzymes and IAA mediate salicylic acid to prevent rice spikelet degeneration caused by heat stress. Plant Growth Regulation, 2017,83(2):1-11.
doi: 10.1007/s10725-017-0276-1
[10] 丁颖, 李乃铭, 徐雪宾 , 等. 水稻幼穗发育和谷粒充实过程观察. 农业学报, 1959,10(2):265-282.
[11] 松岛省三. 稻作理论与技术. 庞诚, 译. 北京:农业出版社, 1979: 63-74.
[12] 星川清亲. 解剖图说箱的生长. 蒋彭炎, 巧德海,译. 上海:上海科学技术出版社, 1980: 212-224.
[13] 吉田昌一. 稻作科学原理. 厉谋初, 译. 杭州:浙江科学技术出版社, 1984: 55-63.
[14] 凌启鸿, 张洪程, 苏祖芳 . 水稻叶龄模式. 北京: 利学出版社, 1994: 69-215.
[15] Zhang D, Yuan Z, An G , et al. Panicle Developmen. Genetics and Genomics of Rice. New York:Springer, 2013: 279-295.
[16] Inubushi T . Rice plant development:from zygote to spikelet. Journal of African Earth Sciences, 2014,97(3):273-296.
doi: 10.1016/j.jafrearsci.2014.04.034
[17] Li S, Qian Q, Fu Z , et al. Short panicle1 encodes a putative PTR family transporter and determines rice panicle size. Plant Journal, 2010,58(4):592-605.
doi: 10.1111/j.1365-313X.2009.03799.x pmid: 19154200
[18] Mohapatra P K, Panigrahi R, Turner N C . Chapter five-physiology of spikelet development on the rice panicle :Is manipulation of apical dominance crucial for grain yield improvement? Advances in Agronomy, 2011,110:333-359.
doi: 10.1016/B978-0-12-385531-2.00005-0
[19] Kobata T, Yoshida H, Masiko U , et al. Spikelet sterility is associated with a lack of assimilate in high-spikelet-number rice. Agronomy Journal, 2013,105(6):1821.
doi: 10.2134/agronj2013.0115
[20] Yoshida A, Ohmori Y, Kitano H , et al. Aberrant spikelet and panicle1,encoding a TOPLESS-related transcriptional co-repressor,is involved in the regulation of meristem fate in rice. Plant Journal, 2012,70(2):327-339.
doi: 10.1111/j.1365-313X.2011.04872.x pmid: 22136599
[21] 李玲锋, 孙晓棠, 欧阳林娟 , 等. 水稻小穗退化的影响因素及遗传研究进展. 核农学报, 2018,32(2):291-296.
doi: 10.11869/j.issn.100-8551.2018.02.0291
[22] Kuanar S R, Panigrahi R, Kariali E , et al. Apoplasmic assimilates and grain growth of contrasting rice cultivars differing in grain dry mass and size. Plant Growth Regulation, 2010,61(2):135-151.
doi: 10.1007/s10725-010-9459-8
[23] Ishimaru T, Hirose T, Matsuda T , et al. Expression patterns of genes encoding carbohydrate-metabolizing enzymes and their relationship to grain filling in rice (Oryza sativa L. ):comparison of caryopses located at different positions in a panicle. Plant and Cell Physiology, 2005,46(4):620-628.
doi: 10.1093/pcp/pci066
[24] Tsai-Mei O L, Setter T L . Enzyme activities of starch and sucrose pathways and growth of apical and basal maize kernels. Plant Physiology, 1985,79(3):848-851.
doi: 10.1104/pp.79.3.848 pmid: 16664503
[25] Kamoi T, Kenzo T, Kuraji K , et al. Abortion of reproductive organs as an adaptation to fluctuating daily carbohydrate production. Oecologia, 2008,154(4):663-677.
doi: 10.1007/s00442-007-0864-2 pmid: 17940803
[26] Yang H J, Yang L X, Huang J Y . Effect of free-air CO2 enrichment on spikelet differentiation and degeneration of japonica rice (Oryza sativa L. ) cultivar Wuxiangjing 14. Acta Agronomica Sinica, 2006,32(1):118-124.
[27] Wang Y, Yang L, Kobayashi K , et al. Investigations on spikelet formation in hybrid rice as affected by elevated tropospheric ozone concentration in China. Agriculture Ecosystems & Environment, 2012,150:63-71.
doi: 10.1016/j.agee.2012.01.016
[28] Afza R, Shen M, Zapataarias F J , et al. Effect of spikelet position on rice anther culture efficiency. Plant Science, 2000,153(2):155-159.
doi: 10.1016/S0168-9452(99)00266-6 pmid: 10717321
[29] Samuelajr O, James S, Jamesh O . Association mapping of grain quality and flowering time in elite japonica rice germplasm. Journal of Cereal Science, 2010,51(3):337-343.
doi: 10.1016/j.jcs.2010.02.001
[30] Zhang W, Chen Y, Wang Z , et al. Polyamines and ethylene in rice young panicles in response to soil drought during panicle differentiation. Plant Growth Regulation, 2017,82(3):491-503.
doi: 10.1007/s10725-017-0275-2
[31] 张伟杨 . 水分和氮素对水稻颖花发育与籽粒灌浆的调控机制. 扬州:扬州大学, 2018.
[32] Kobata T, Tanaka S, Utumi M , et al. Sterility in rice (Oryza sativa L.) subject to drought during the booting stage occurs not because of lack of assimilate or of water-deficit in the shoot but because of dehydration of the root-zone. Japanese Journal of Crop Science, 1994,63(3):510-517.
doi: 10.1626/jcs.63.510
[33] Ganeshaiah K N, Shaanker R U . Seed and fruit abortion as a process of self organization among developing sinks. Physiologia Plantarum, 2010,91(1):81-89.
doi: 10.1111/j.1399-3054.1994.tb00662.x
[34] Verma V, Ravindran P, Kumar P P . Plant hormone-mediated regulation of stress responses. BMC Plant Biology, 2016,16(1):86-88.
doi: 10.1186/s12870-016-0771-y pmid: 27079791
[35] Yang J, Zhang J, Wang Z , et al. Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiology, 2001,127(1):315-323.
doi: 10.1104/pp.127.1.315
[36] Ding C, You J, Chen L , et al. Nitrogen fertilizer increases spikelet number per panicle by enhancing cytokinin synthesis in rice. Plant Cell Reports, 2014,33(2):363-371.
doi: 10.1007/s00299-013-1536-9 pmid: 24258242
[37] Pandey G K . Mechanism of plant hormone signaling under stress. New Jersey:Wiley Blackwell, 2017.
[38] Cline M G . The role of hormones in apical dominance. New approaches to an old problem in plant development. Physiologia Plantarum, 2010,90(1):230-237.
doi: 10.1111/j.1399-3054.1994.tb02216.x
[39] Finkelstein R R . The role of hormones during seed development and germination//Davies P J. Plant Hormones,Biosynthesis,Signal Transduction,Action! Dordrecht, The Netherlands:Kluwer Academic Publishers, 2004: 513-517.
[40] Zhang W, Cao Z, Zhou Q , et al. Grain filling characteristics and their relations with endogenous hormones in large- and small-grain mutants of rice. PloS ONE, 2016,11(10):e0165321.
doi: 10.1371/journal.pone.0165321 pmid: 27780273
[41] 王丰, 程方民, 刘奕 , 等. 不同温度下灌浆期水稻籽粒内源激素含量的动态变化. 作物学报, 2006,32(1):25-29.
[42] 杨建昌, 刘凯, 张慎凤 , 等. 水稻减数分裂期颖花中激素对水分胁迫的响应. 作物学报, 2008,34(1):111-118.
doi: 10.3321/j.issn:0496-3490.2008.01.017
[43] Yokoyama C, Tsuda M, Hirai Y . Effects of plant growth regulators on number of spikelets per panicle in rice (Oryza sativa L. ) under saline flooding conditions. Japanese Journal of Crop Science, 2002,71(3):376-382.
doi: 10.1626/jcs.71.376
[44] Werner T, Schmülling T . Cytokinin action in plant development. Current Opinion in Plant Biology, 2009,12(5):527-538.
doi: 10.1016/j.pbi.2009.07.002
[45] Zheng C, Zhu Y, Wang C , et al. Wheat grain yield increase in response to pre-anthesis foliar application of 6-benzylaminopurine is dependent on floret development. PloS ONE, 2016,11(6):e0156627.
doi: 10.1371/journal.pone.0156627 pmid: 27258059
[46] Zheng C, Zhu Y, Zhu H , et al. Floret development and grain setting characteristics in winter wheat in response to pre-anthesis applications of 6-benzylaminopurine and boron. Field Crops Research, 2014,169:70-76.
doi: 10.1016/j.fcr.2014.09.005
[47] Cheng C, Lur H . Ethylene may be involved in abortion of the maize caryopsis. Physiologia Plantarum, 2010,98(2):245-252.
doi: 10.1034/j.1399-3054.1996.980205.x
[48] Moshe H, Joseph R, Eliezer E G , et al. The novel ethylene antagonist,3-cyclopropyl-1-enyl-propanoic acid sodium salt (CPAS),increases grain yield in wheat by delaying leaf senescence. Plant Growth Regulation, 2014,73(3):249-255.
doi: 10.1007/s10725-013-9885-5
[49] Mohapatra P K, Naik P K, Patel R . Ethylene inhibitors improve dry matter partitioning and development of late flowering spikelets on rice panicles. Australian Journal of Plant Physiology, 2000,27(4):311-323.
doi: 10.1071/PP99057
[50] Davies W J, Jones H G . Abscisic acid physiology and biochemistry. Bios Scientific, 1991,42:7-17.
[51] Yang J C, Zhang J H, Liu K , et al. Abscisic acid and ethylene interact in wheat grains in response to soil drying during grain filling. New Phytologist, 2010,171(2):293-303.
doi: 10.1111/j.1469-8137.2006.01753.x pmid: 16866937
[52] Pei G . Progress in studies on drought resistance mechanisms in wheats. Biotechnology Bulletin, 2010,20(4):22-27.
doi: 10.1080/00949651003724790
[53] 张伟杨, 钱希旸, 李银银 , 等. 土壤干旱对小麦生理性状和产量的影响. 麦类作物学报, 2016,36(4):491-500.
doi: 10.7606/j.issn.1009-1041.2016.04.15
[54] Yang J C, Zhang J H, Wang Z Q , et al. Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene. Journal of Experimental Botany, 2006,57(1):149-160.
doi: 10.1093/jxb/erj018 pmid: 16330527
[55] Yang J C, Zhang J H, Liu K , et al. Abscisic acid and ethylene interact in rice spikelets in response to water stress during meiosis. Journal of Plant Growth Regulation, 2007,26(4):318-328.
doi: 10.1007/s00344-007-9013-8
[56] Toyota M, Tsutsui I, Kusutani A , et al. Initiation and development of spikelets and florets in wheat as influenced by shading and nitrogen supply at the spikelet phase. Plant Production Science, 2001,4(4):283-290.
doi: 10.1626/pps.4.283
[57] Nayyar H, Walia D P . Genotypic variation in wheat in response to water stress and abscisic acid-induced accumulation of osmolytes in developing grains. Journal of Agronomy & Crop Science, 2010,190(1):39-45.
doi: 10.1046/j.0931-2250.2003.00072.x
[58] 杨卫兵, 王振林, 尹燕枰 , 等. 外源ABA和GA对小麦籽粒内源激素含量及其灌浆进程的影响. 中国农业科学, 2011,44(13):2673-2682.
doi: 10.3864/j.issn.0578-1752.2011.13.005
[59] Wu C Y, Trieu A, Radhakrishnan P , et al. Brassinosteroids regulate grain filling in rice. Plant Cell, 2008,20(8):2130-2145.
doi: 10.1105/tpc.107.055087 pmid: 18708477
[60] Zhi H, Guo H, Li X , et al. Regulatory function of polyamine oxidase-generated hydrogen peroxide in ethylene-induced stomatal closure in Arabidopsis thaliana. Journal of Integrative Agriculture, 2013,12(2):251-262.
doi: 10.1016/S2095-3119(13)60224-5
[61] Fariduddin Q, Yusuf M, Ahmad I , et al. Brassinosteroids and their role in response of plants to abiotic stresses. Biologia Plantarum, 2013,58(1):9-17.
doi: 10.1007/s10535-013-0374-5
[62] Jiang W B, Lin W H . Brassinosteroid regulates seed size and shape in Arabidopsis. Plant Physiology, 2013,162(2):1965-1977.
doi: 10.1104/pp.113.217703
[63] Zhao J F, Wu C X, Yuan S J , et al. Kinase activity of OsBRI1 is essential for brassinosteroids to regulate rice growth and development. Plant Science, 2013, 199-200(2):113-120.
doi: 10.1016/j.plantsci.2012.10.011 pmid: 23265324
[64] Zhang W Y, Zhu K Y, Wang Z Q , et al. Brassinosteroids function in spikelet differentiation and degeneration in rice. Journal of Integrative Plant Biology, 2018,doi: 10.1111/jipb.12722.
[65] Alcazar R, Altabella T, Marco F , et al. Polyamines:Molecules with regulatory functions in plant abiotic stress tolerance. Planta, 2010,231(6):1237-1249.
doi: 10.1007/s00425-010-1130-0 pmid: 20221631
[66] Chen T T, Xu Y J, Wang J C , et al. Polyamines and ethylene interact in rice grains in response to soil drying during grain filling. Journal of Experimental Botany, 2013,64(8):2523-2538.
doi: 10.1093/jxb/ert115 pmid: 23606413
[67] Nambeesan S, AbuQamar S,Laluk K ,et al. Polyamines attenuate ethylene-mediated defense responses to abrogate resistance to botrytis cinerea in tomato. Plant Physiology, 2012,158(2):1034-1045.
doi: 10.1104/pp.111.188698 pmid: 22128140
[68] 张伟杨, 徐云姬, 钱希旸 , 等. 小麦籽粒游离多胺对土壤干旱的响应及其与籽粒灌浆的关系. 作物学报, 2016,42(6):860-872.
doi: 10.3724/SP.J.1006.2016.00860
[69] 戚华雄, 杜雪树, 李进波 . 水稻颖花退化的遗传研究进展. 湖北农业科学, 2014,53(24):5905-5907.
doi: 10.14088/j.cnki.issn0439-8114.2014.24.001
[70] Yamagishi J, Miyamoto N, Hirotsu S , et al. QTLs for branching,floret formation,and pre-flowering floret abortion of rice panicle in a temperate japonica tropical japonica cross. Theoretical and Applied Genetics, 2004,109(8):1555-1561.
doi: 10.1007/s00122-004-1795-5 pmid: 15365628
[71] 王斌, 刘贺梅, 毛毕刚 , 等. 水稻顶部小穗退化性状的QTL分析. 中国水稻科学, 2011,25(5):561-564.
doi: 10.3969/j.issn.10017216.2011.05.016
[72] 高素伟, 张玲, 毛毕刚 , 等. 水稻穗顶部退化突变体L-05261的遗传分析. 作物学报, 2011,37(11):1935-1941.
doi: 10.3724/SP.J.1006.2011.01935
[73] 徐华山, 孙永建, 周红菊 , 等. 构建水稻优良恢复系背景的重叠片段代换系及其效应分析. 作物学报, 2007,33(6):979-986.
doi: 10.3321/j.issn:0496-3490.2007.06.019
[74] Bai J, Zhu X, Wang Q , et al. Rice TUTOU1 encodes a suppressor of cAMP receptor-like protein that is important for actin organization and panicle development. Plant Physiology, 2015,169(2):1179-1191.
doi: 10.1104/pp.15.00229
[75] 李真, 毛毕刚, 衡月芹 , 等. 水稻穗顶部退化基因PAA2的精细定位. 植物遗传资源学报, 2014,15(5):1023-1027.
doi: 10.13430/j.cnki.jpgr.2014.05.015
[76] Heng Y Q, Wu C Y, Long Y , et al. OsALMT7 maintains panicle size and grain yield in rice by mediating malate transport. Plant Cell, 2018,30(4):889-906.
doi: 10.1105/tpc.17.00998 pmid: 29610210
[77] 孙羲 . 作物营养与施肥. 北京: 农业出版社, 1990.
[78] 章星传, 黄文轩, 朱宽宇 , 等. 施氮量对不同水稻品种氮肥利用率与农艺性状的影响. 作物杂志, 2017(4):69-78.
[79] 王惠芝, 李刚华, 王绍华 , 等. 水稻穗分化期碳氮积累特征及其与每穗颖花数的关系. 中国作物学会栽培专业委员会换届暨学术研讨会论文集, 2007.
[80] 乔云发, 罗盛国, 刘元英 , 等. 叶龄模式氮肥调控对水稻颖花根活量的影响. 农业系统科学与综合研究. 2006,22(2):121-124.
doi: 10.3969/j.issn.1001-0068.2006.02.011
[81] 林忠成, 李土明, 吴福观 , 等. 基蘖肥与穗肥氮比例对双季稻产量和碳氮比的影响. 植物营养与肥料学报, 2011,17(2):269-275.
doi: 10.11674/zwyf.2011.0058
[82] 潘俊峰, 王博, 崔克辉 , 等. 氮肥对水稻节间和叶鞘非结构性碳水化合物积累转运特征的影响. 中国水稻科学, 2016,30(3):273-282.
doi: 10.16819/j.1001-7216.2016.5128
[83] 董明辉, 谢裕林, 乔中英 , 等. 水稻不同粒位籽粒淀粉与蛋白质累积动态差异. 中国水稻科学, 2011,25(3):297-306.
doi: 10.3969/j.issn.1001-7216.2011.03.011
[84] 王夏雯, 王绍华, 李刚华 , 等. 氮素穗肥对水稻幼穗细胞分裂素和生长素浓度的影响及其与颖花发育的关系. 作物学报, 2008,34(12):2184-2189.
doi: 10.3724/SP.J.1006.2008.02184
[85] 姬生栋, 栗鹏, 李江伟 , 等. 水稻株系与亲本间灌浆期POD酶谱及遗传效应分析. 作物杂志, 2017(5):17-20.
doi: 10.16035/j.issn.1001-7283.2018.05.003
[1] Xiaoyu Liang, Chunyu Lin, Shumei Ma, Yang Wang. Mining Elite Alleles for Germination Ability in Rice (Oryza sativa L.) under Salt and Alkaline Stress [J]. Crops, 2018, 34(4): 48-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Ruiqi Ma,Zhen Qi,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yushuang Yang,Jinfeng Feng,Min Sun,Guangcai Zhao. Regulation Effects of Growth Regulators on Plant Characters, Yield and Quality of Winter Wheat[J]. Crops, 2018, 34(1): 133 -140 .
[5] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[6] Hongyan Li,Yonghong Wang,Rulang Zhao,Wenjie Zhang,Bo Ming,Ruizhi Xie,Keru Wang,Lulu Li,Shang Gao,Shaokun Li. The Construction and Application of Maize Grain Dehydration Model in Yellow River Irrigation and Pumping Irrigation District in Ningxia[J]. Crops, 2018, 34(4): 149 -153 .
[7] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[8] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[9] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[10] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .