Crops ›› 2020, Vol. 36 ›› Issue (6): 23-29.doi: 10.16035/j.issn.1001-7283.2020.06.004

Previous Articles     Next Articles

Genome-Wide Association Study of Digestibility of Straw in Maize

Lin Miao1(), Zhang Qiuzhi1, Shi Liyu1, Liu Bei2, Wang Hongwu2, Pan Jinbao1()   

  1. 1Beijing University of Agriculture, Beijing 102206, China
    2Zhongyu Golden Marker (Beijing) Biotechnology Incorporated Company, Beijing 102206, China
  • Received:2020-04-12 Revised:2020-07-08 Online:2020-12-15 Published:2020-12-09
  • Contact: Pan Jinbao E-mail:18404984376@163.com;panjinbao126@126.com

Abstract:

The 48h dry matter digestibility (48h IVDMD) is an important index to measure the quality of silage maize. In order to explore the molecular genetic mechanism of digestibility of 48h IVDMD, 341 maize inbred lines were evaluated for 48h IVDMD in 2018 in Shenyang and Tongliao. These inbred lines were subjected to whole genome sequencing, generating a total of 6 276 612 high quality SNPs. GWAS analysis detected 153 SNPs using the threshold of P <1.0×10-6 and 4 SNPs using the threshold of P < 1.0×10-8. Thirty-eight candidate genes were identified based on the GWAS, and the biological functions of these genes were mainly involved in cell growth and development, defense reaction, and signal transduction.

Key words: Maize, Straw, 48h dry matter digestibility, Genome-wide association study

Fig.1

Frequency distribution of 48h IVDMD"

Table 1

Statistics analysis of 48h IVDMD in two environments"

地点
Location
均值
Mean (%)
变异范围
Range (%)
变异系数
Coefficient of variation (%)
偏度
Skewness (%)
峰度
Kurtosis (%)
相关系数
Correlation coefficient
广义遗传力
Broad-sense heritability (%)
沈阳Shenyang
沈阳Shenyang 80.96 67.24~91.41 4.85 -0.64 1.04
通辽Tongliao 67.94 49.75~85.94 9.50 -0.40 -0.24 0.63** 71.98

Fig.2

Manhattan plot of genome-wide association under the environments of Shenyang and Tongliao The solid and dashed lines represent significance thresholds 8.0 and 6.0, respectively"

Fig.3

Quantile-quantile plot of genome-wide association under the environments of Shenyang and Tongliao The red line represents the expected distribution of null hypothesis, and the blue line represents the observed correlation distribution with the percentage of Tongliao straw at 48h IVDMD"

Fig.4

Significant SNPs were distributed on chromosomes"

Fig.5

Manhattan plots and its QQ plots of genome-wide association in two environments (MLM)"

Fig.6

The location of the variant gene"

[1] 潘金豹, 张秋芝, 郝玉兰, 等. 我国青贮玉米育种的策略与目标. 玉米科学, 2002,10(4):3-4.
[2] Yves B, Carine G, Deborah G, et al. Genetic variation and breeding strategies for improved cell wall digestibility in annual forage crops. A review. Animal Research, 2003,52:193-228.
[3] 白琪林, 陈绍江, 董晓玲, 等. 近红外漫反射光谱法测定玉米秸秆体外干物质消化率. 光谱学与光谱分析, 2006,26(2):271-274.
[4] 张吉鹍, 邹庆华, 张䴔, 等. 奶牛粗饲料纤维品质的综合评定研究. 中国奶牛, 2009(1):20-22.
[5] Li K, Wang H W, Hu X J, et al. Genetic and quantitative trait locus analysis of cell wall components and forage digestibility in the Zheng58 × HD568 maize RIL population at anthesis stage. Frontiers in Plant Science, 2017,8:1472.
doi: 10.3389/fpls.2017.01472 pmid: 28883827
[6] 王琪. 利用连锁和关联分剖析玉米茎秆细胞壁组分及消化性状的遗传基础. 北京:中国农业科学院, 2015.
[7] Wang H W, Han J, Sun W T, et al. Genetic analysis and QTL mapping of stalk digestibility and kernel composition in a high-oil maize mutant (Zea mays L.). Plant Breeding, 2010,129:318-326.
[8] Méchin V, Argillier O, Hebert Y, et al. Genetic analysis and QTL mapping of cell wall digestibility and lignification in silage maize. Crop Science, 2001,41:690-670.
[9] Wang H W, Li K, Hu X H, et al. Genome-wide association analysis of forage quality in maize mature stalk. BMC Plant Biology, 2016,16:227.
pmid: 27769176
[10] 杨小红, 严建兵, 郑艳萍, 等. 植物数量性状关联分析研究进展. 作物学报, 2007,33(4):523-530.
[11] Huang X Y, Han B. Natural variations and genome-wide association studies in crop plants. annual. review. Plant Biology. 2014,65:531-551.
[12] 贺城, 杨增玲, 黄光群, 等. 可见/近红外光谱分析秸秆-煤混燃物的秸秆含量. 农业工程学报, 2013,29(17):188-195.
[13] 陈丽丽, 张鹏, 黄新, 等. 玉米基因组DNA提取及浓度测定方法评价. 生物技术通报, 2011(12):70-74.
[14] Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009,25(14):1754-1760.
doi: 10.1093/bioinformatics/btp324 pmid: 19451168
[15] Raj A, Stephens M, Pritchard J K. FastSTRUCTURE:variational inference of population structure in large SNP data sets. Genetics, 2014,197(2):573-589.
doi: 10.1534/genetics.114.164350
[16] 刘晓磊. 一种交替运用固定效应和随机效应模型优化全基因组关联分析的算法开发. 武汉:华中农业大学, 2015.
[17] Wu X, Li K Y, Zheng Y X, et al. Genetic discovery for oil production and quality in sesame. Nature Communications, 2015,6:8609.
doi: 10.1038/ncomms9609 pmid: 26477832
[18] Barrett J C, Fry B, Maller J, et al. Haploview:Analysis and visualization of LD and haplotype maps. Bioinformatics, 2005,21(2):263-265.
doi: 10.1093/bioinformatics/bth457 pmid: 15297300
[19] Wang K, Li M H, Hakonarson. ANNOVAR:functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research, 2010,38(16):e164.
doi: 10.1093/nar/gkq603 pmid: 20601685
[20] Cristina B, Isabel P, Luísa R. Gene expression regulation by upstream open reading frames and human disease. PLoS Genetics, 2013,9(8):e1003529.
doi: 10.1371/journal.pgen.1003529 pmid: 23950723
[21] McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit:a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 2010,20(9):1297-1303.
pmid: 20644199
[22] 曹运琳, 邢梦云, 徐昌杰, 等. 植物黄酮醇生物合成及其调控研究进展. 园艺学报, 2018,45(1):177-192.
[23] 张瑜. 拟南芥FRIGIDA-LIKE蛋白家族成员AtFRL4基因及其上游调控序列的克隆与转化研究. 南京:南京农业大学, 2012.
[24] Roe J L, Durfee T, Zupan J R, et al. TOUSLED is a nuclear serine/threonine protein kinase that requires a coiled-coil region for oligomerization and catalytic activity. Journal of Biological Chemistry, 1997,272(9):5838-5845.
[25] Mark H L, Lambermon Y F, Lorković Z J. UBA1 and UBA2,two proteins that interact with UBP1,a multifunctional effector of pre-mRNA maturation in plants. Molecular and cell Biology, 2002,22(12):4346-4357.
[26] Pagant S, Bichet A, Sugimoto K, et al. KOBITO1 encodes a novel plasma membrane protein necessary for normal synthesis of cellulose during cell expansion in Arabidopsis. The Plant Cell, 2002,14(9):2001-2013.
doi: 10.1105/tpc.002873 pmid: 12215501
[27] Xin W, Yan J J, Bao C, et al. Glycosyltransferase-like protein ABI8/ELD1/KOB1 promotes Arabidopsis hypocotyl elongation through regulating cellulose biosynthesis. Plant Cell & Environment, 2014,38:411-422.
[28] 解敏敏, 晁江涛, 孔英珍. 参与木葡聚糖合成的糖基转移酶基因研究进展. 植物学报, 2015,50(5):644-651.
[29] Chou Y H, Gennady P, Olga A Z. Xyloglucan Xylosyltransferases XXT1,XXT2,and XXT5 and the Glucan Synthase CSLC4 form golgi-localized multiprotein complexes. Plant Physiology, 2012,159(4):1355-1366.
doi: 10.1104/pp.112.199356 pmid: 22665445
[30] Wang C, Li S, Sophia N, et al. Mutation in xyloglucan 6-xylosytransferase results in abnormal root hair development in Oryza sativa. Journal of Experimental Botany, 2014,65(15):4149-4157.
doi: 10.1093/jxb/eru189 pmid: 24834920
[31] Vorwerk S, Somerville S, Somerville C. The role of plant cell wall polysaccharide composition in disease resistance. Trends in Plant Science, 2004,9(4):203-209.
doi: 10.1016/j.tplants.2004.02.005
[32] T. Heitz, D R. Bergey, C A. Ryan. A gene encoding a chloroplast-targeted lipoxygenase in tomato leaves is transiently induced by wounding,systemin,and methyl jasmonate. Plant Physiology, 1997,114(3):1085-1093.
doi: 10.1104/pp.114.3.1085 pmid: 9232884
[33] 宗娜, 阎云花, 王琛柱. 昆虫对植物蛋白酶抑制素的诱导及适应机制. 昆虫学报, 2003(4):533-539.
[34] Chen J, Burke J J, Velten J, et al. FtsH11 protease plays a critical role in Arabidopsis thermotolerance. The Plant Journal, 2006,48(1):73-84.
doi: 10.1111/j.1365-313X.2006.02855.x pmid: 16972866
[35] 陈发晶, 谭蕊, 黄萌雨, 等. 类枯草杆菌蛋白酶在植物和病原物互作中的研究进展. 分子植物育种, 2018,16(10):3146-3153.
[36] Albertsen M, Fox T, Leonard A, et al. Cloning and use of the ms9 gene from maize:US20160024520A1. 2015-12-23.
[37] 戴毅, 高莹莹, 黄泽峰, 等. 玉米R2R3型转录因子家族生物学功能综述. 江苏农业科学, 2013,41(3):6-8.
[1] Dong Huaiyu, Dong Zhi, Liu Kejie, Wang Lijuan, Liu Peibin, Hou Zhiyan. Effects of Different Maize Straw Returning Modeson Occurrence of Main Diseases of Maize [J]. Crops, 2020, 36(6): 104-108.
[2] Jian Liqun, Zhang Yifei, Yang Kejun, Wang Yufeng, Chen Tianyu, Zhang Jiwei, Zhang Jinsong, Li Qing, Liu Tianhao, Xiao Shanshan, Peng Cheng, Wang Baosheng. Effects of Low Temperature under Different Phases between Sowing and Seedling Periods on Growth and Physiological Resistance of Maize Seedlings [J]. Crops, 2020, 36(6): 61-68.
[3] Ren Yun, Liu Jing, Li Zhexin, Li Qiang. Root Morphology and Dry Matter Accumulation of Maize Seedlings in Response to Low Iron Stress [J]. Crops, 2020, 36(6): 69-79.
[4] Huang Shaohui, Yang Junfang, Liu Xuetong, Yang Yunma, Xing Suli, Han Baowen, Liu Mengchao, Jia Liangliang, He Ping. Effects of Wheat Long-Term Straw Returning on Soil Phosphorus Content and Phosphorus Balance in Loamy Tidal Soil [J]. Crops, 2020, 36(6): 89-96.
[5] Zhang Gang, Zhang Shijie, Wang Dejian, Yu Yuanchun. Analysis of Yield and Economic Benefit of Straw Incorporation under Rice-Wheat Double Cropping System [J]. Crops, 2020, 36(6): 97-103.
[6] Luo Yuqiong, Yan Bo, Wu Ke, Xie Huimin, Liang He, Jiang Ligeng. Effects of No-Tillage and Straw Returning on Soil Fertility and Rice Yield in Farmland [J]. Crops, 2020, 36(5): 133-139.
[7] Yan Xiaoguang, Du Yanwei, Li Hong, Dong Hongfen, Li Aijun, Wang Guoliang, Zhou Nan. Error Analysis of Moisture Content in Maize Seeds by Quick Water-Content Measuring Method [J]. Crops, 2020, 36(5): 170-173.
[8] Wu Qiong, Ding Kaixin, Yu Minglong, Huang Wenting, Zuo Guanqiang, Feng Naijie, Zheng Dianfeng. Effects of New Plant Growth Regulator B2 on Photosynthetic Fluorescence Characteristics and Yield of Maize [J]. Crops, 2020, 36(5): 174-181.
[9] Wu Weihua, Liu Jiayou, Yuan Liuzheng, Yan Haixia, Fu Jiafeng, Wang Huiqiang, Wang Rui, Li Teng, Liu Kang. Effects of High Temperature Stress at Booting Stage on Maize Hybrids [J]. Crops, 2020, 36(5): 59-64.
[10] Li Zhongnan, Wang Yueren, Zhang Yanhui, Wu Shenghui, Qu Haitao, Xu Zhengxue, Li Guangfa. Genetic Analysis of Super Multiple Ear Row Number in DH Line 15D969 of Maize [J]. Crops, 2020, 36(5): 88-92.
[11] Wang Li, Wang Zuoping, Zhang Zhongbao, Bai Ling, Wu Zhongyi. Screening of Strongly Expressed Promoters in Immature Maize Kernels [J]. Crops, 2020, 36(4): 114-120.
[12] Fan Yuanyuan, Wu Haimei, Pang Lei, Lu Jianlong, Xia Bowen, Yang Xuhai. Effects of Straw Mulching on Wheat Yield in Different Ecological Regions in Northern Semi-Arid Areas of China Based on Meta Analysis [J]. Crops, 2020, 36(4): 143-149.
[13] Li Qiang, Kong Fanlei, Yuan Jichao. Effects of Interannual Meteorological Factors on Maize Dry Matter Accumulation and Yield in the Hilly Area of Southwest China [J]. Crops, 2020, 36(4): 150-157.
[14] Zheng Fei, Wang Lixia, Liu Ruixiang, Kong Lingjie, Chen Yanping, Yuan Jianhua, Cui Yakun. Morphological and Physiological Differences of Maize Inbred Lines at Seedling Stage under Waterlogging Stress [J]. Crops, 2020, 36(4): 158-163.
[15] Yuan Wenya, Zhao Xiaolei, Zhou Xumei, Wang Lei, Peng Bo, Wang Yi. The Development of waxy Gene Function Marker and Its Application in Waxy Maize Breeding [J]. Crops, 2020, 36(4): 99-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!