Crops ›› 2020, Vol. 36 ›› Issue (6): 69-79.doi: 10.16035/j.issn.1001-7283.2020.06.010

Previous Articles     Next Articles

Root Morphology and Dry Matter Accumulation of Maize Seedlings in Response to Low Iron Stress

Ren Yun(), Liu Jing, Li Zhexin, Li Qiang()   

  1. College of Landscape Architecture and Life Science (Institute of Special Plants)/Chongqing University of Arts and Sciences, Chongqing 402160, China
  • Received:2020-02-28 Revised:2020-03-16 Online:2020-12-15 Published:2020-12-09
  • Contact: Li Qiang E-mail:821838738@qq.com;839953291@qq.com

Abstract:

In the present study, the response of root morphology and material accumulation of different maize varieties to low iron stress was revealed, which provided theoretical basis for the study of iron nutrition in maize. The nutrient culture method was used to study the changes of root morphology, dry matter accumulation and iron absorption of 32 maize varieties under normal iron (100μmol/L) and low iron (10μmol/L) conditions. The results showed that the root dry weight, shoot dry weight, dry weight per plant, total root length, chlorophyll content, leaf area, root surface area, root volume, root length, plant height, number of root tips, visible leaves, unfolded leaves, stem diameter, iron accumulation per plant, iron absorption efficiency and active iron content in leaves were significantly reduced and the average root diameter, root-shoot ratio and iron physiological efficiency of 32 maize varieties significantly increased under low iron stress, but there were differences among varieties. Cluster analysis of low iron effect value and two iron levels showed that under the same iron level, there were differences in the comprehensive performance of various traits of maize seedlings. Three iron-efficient varieties Zhenghong 2, Handan 999 and Quanyu 9, and three iron-inefficient varieties Chuandan 455, Chuandan 189 and Chengdan 30 were selected according to the comprehensive performance of two iron levels. Under low iron stress, the decrease of dry weight per plant, iron accumulation per plant, iron absorption efficiency and active iron content in leaves and the increase of root-shoot ratio of iron-efficient varieties were lower than those of iron-inefficient varieties, while the increase of iron physiological efficiency was higher than that of iron-inefficient varieties. Comprehensive analysis showed that iron-efficient varieties had stronger adaptability to low iron stress, and improving iron physiological efficiency is an important physiological mechanism for maize seedlings to adapt to low iron stress.

Key words: Low iron stress, Maize, Root morphology, Dry matter accumulation

Table 1

Number and name of maize varieties in test"

编号
Number
名称
Name
编号
Number
名称
Name
1 SAU1210 17 科茂918(KM918)
2 必胜2号(BS2) 18 绵单118(MD118)
3 博玉1号(BY1) 19 荃玉9号(QY9)
4 成单30(CD30) 20 群策99(QC99)
5 川单189(CD189) 21 先玉508(XY508)
6 川单418(CD418) 22 一丰311(YF311)
7 川单455(CD455) 23 长玉19(CY19)
8 德玉18(DY18) 24 正大619(ZD619)
9 登海605(DH605) 25 正红102(ZH102)
10 迪丰998(DF998) 26 正红211(ZH211)
11 邡玉1号(FY1) 27 正红212(ZH212)
12 福得2号(FD2) 28 正红2号(ZH2)
13 汉单999(HD999) 29 正红311(ZH311)
14 华农玉8号(HNY8) 30 正红505(ZH505)
15 华试9528(HS9528) 31 正田1号(ZT1)
16 佳禾158(JH158) 32 中单808(ZD808)

Table 2

Seedling traits of different maize inbred lines at two Fe application levels"

性状
Trait
处理
Treatment
性状表现Performances of trait F
均值
Mean
最大值
Max
最小值
Min
变异系数
Coefficient of
variation (%)
低铁效应
Low Fe
effect (%)
品种
Variety
Fe含量
Fe content
品种×Fe含量
Variety×Fe
content
PH (cm) NFe 34.06 42.30 27.60 11.36 -14.01 16.45** 180.91** 31.60**
LFe 29.29 42.30 20.17 18.27
SD (mm) NFe 5.04 6.21 4.00 10.71 -12.90 3.51** 37.26** 0.75ns
LFe 4.39 5.59 3.42 11.85
VL NFe 5.58 6.33 5.00 7.71 -9.50 5.88** 108.38** 2.91**
LFe 5.05 6.00 4.33 8.32
UL NFe 3.60 4.00 3.00 11.94 -9.44 8.04** 54.45** 2.53**
LFe 3.26 4.00 3.00 13.19
LA (cm2) NFe 133.09 187.84 91.51 22.59 -25.96 13.34** 150.47** 2.88**
LFe 98.54 165.38 57.02 34.39
SPAD NFe 40.83 46.30 35.73 6.34 -28.83 49.86** 1 654.17** 40.83**
LFe 29.06 42.53 9.30 36.85
RL (cm) NFe 25.79 32.03 13.50 15.66 -24.00 7.88** 209.96** 5.12**
LFe 19.60 31.70 11.23 23.72
TRL (cm) NFe 1 433.49 2 264.63 630.76 27.34 -38.07 18.79** 395.78** 3.57**
LFe 887.70 1 587.58 491.40 37.77
RTN NFe 3 466.52 6 194.33 1 386.33 26.37 -42.04 11.71** 308.51** 3.11**
LFe 2 009.11 4 157.00 836.00 43.62
RSA (cm2) NFe 272.18 412.12 138.73 27.33 -32.63 23.96** 372.32** 3.28**
LFe 183.37 318.21 95.97 32.78
RAD (cm) NFe 0.61 0.86 0.47 13.11 11.48 6.54** 47.43** 3.03**
LFe 0.68 0.95 0.54 13.24
RV (cm3) NFe 4.17 8.33 2.38 30.46 -26.14 19.20** 165.60** 2.80**
LFe 3.08 5.38 1.52 31.49
RDW (g) NFe 0.27 0.46 0.14 25.93 -29.63 31.54** 336.43** 3.06**
LFe 0.19 0.37 0.11 31.58
SDW (g) NFe 1.10 1.95 0.66 27.27 -33.64 32.89** 476.30** 4.02**
LFe 0.73 1.61 0.36 39.73
PDW (g) NFe 1.37 2.34 0.87 26.28 -32.85 35.39** 512.60** 3.67**
LFe 0.92 1.91 0.50 36.96
R/S NFe 0.25 0.37 0.18 20.00 12.00 16.70** 65.32** 10.95**
LFe 0.28 0.46 0.19 21.43

Table 3

Correlative analysis of sixteen traits at seedling stage among different maize varieties under two Fe levels"

LFe性状
LFe trait
NFe 性状 NFe Trait
PH SD VL UL LA SPAD RL TRL RTN RSA RAD RV RDW SDW PDW R/S
PH -0.73** -0.43* -0.33 -0.88** -0.29 -0.46** -0.55** -0.44* -0.57** -0.09 -0.51** -0.47** -0.77** -0.74** -0.36*
SD -0.85** -0.61** -0.51** -0.76** -0.38* -0.48** -0.68** -0.41* -0.76** -0.02 -0.72** -0.73** -0.82** -0.84** -0.11
VL -0.60** -0.52** -0.85** -0.41** -0.34 -0.24 -0.32 -0.18 -0.46** -0.21 -0.52** -0.57** -0.57** -0.59** -0.01
UL -0.61** -0.52** -0.73** -0.26 -0.32 -0.02 -0.28 -0.25 -0.43** -0.25 -0.51** -0.57** -0.48** -0.51** -0.14
LA -0.91** -0.88** -0.49** -0.48** -0.15 -0.51** -0.67** -0.50** -0.67** -0.14 -0.57** -0.56** -0.86** -0.83** -0.35
SPAD -0.78** -0.65** -0.65** -0.59** -0.72** -0.01 -0.24 -0.15 -0.29 -0.17 -0.32 -0.29 -0.26 -0.27 -0.06
RL -0.75** -0.54** -0.70** -0.50** -0.57** -0.62** -0.52** -0.49** -0.43* -0.40* -0.27 -0.31 -0.48** -0.47** -0.23
TRL -0.64** -0.57** -0.58** -0.38* -0.60** -0.50** -0.74** -0.74** -0.93** -0.42* -0.74** -0.74** -0.67** -0.72** -0.12
RTN -0.50** -0.43* -0.47** -0.42** -0.49** -0.32 -0.61** -0.83** -0.59** -0.53** -0.37* -0.38* -0.44* -0.45* -0.01
RSA -0.68** -0.60** -0.64** -0.44* -0.65** -0.59** -0.75** -0.95** -0.71** -0.07 -0.94** -0.90** -0.78** -0.83** -0.19
RAD -0.17 -0.16 -0.20 -0.14 -0.20 -0.13 -0.27 -0.54** -0.64** -0.28 -0.27 -0.19 -0.09 -0.11 -0.16
RV -0.64** -0.55** -0.61** -0.42* -0.60** -0.62** -0.66** -0.76** -0.46** -0.92** -0.01 -0.93** -0.76** -0.83** -0.24
RDW -0.72** -0.72** -0.53** -0.45** -0.74** -0.67** -0.62** -0.75** -0.48** -0.86** -0.09 -087** -0.76** -0.84** -0.36*
SDW -0.90** -0.85** -0.62** -0.54** -0.88** -0.75** -0.73** -0.69** -0.44* -0.74** -0.20 -0.69** -0.82** -0.99** -0.31
PDW -0.89** -0.85** -0.62** -0.54** -0.88** -0.76** -0.73** -0.72** -0.46** -0.78** -0.19 -0.74** -0.88** -0.99** -0.18
R/S -0.55** -0.44** -0.42** -0.34 -0.48** -0.46 -0.40* -0.14 -0.09 -0.09 -0.23 -0.11 -0.26 -0.54** -0.46**

Fig.1

Principal components analysis of maize seedling traits at two Fe application levels"

Fig.2

Clustering analysis of 32 maize varieties based on different traits at two Fe application levels"

Fig.3

Clusters of 32 maize varieties and the variations analysis between different traits based on LFe condition A means clustering of 32 maize varieties based on LFe effect of different traits; B means change patterns of ten traits in the different groups under NFe and LFe levels in the legend. 1, 2, 3, 4 and 5 represent different groups; Significant difference between two Fe treatments is indicated by "*" (P <0.05); Significant difference between groups in ferritic level is indicated by different small letters (P < 0.05)"

Table 4

Differences of matter accumulation and Fe absorption and utilization in maize varieties"

聚类
Clustering
品种
Variety
单株干重
Total dry weight
per plant (g)
根冠比
Root-shoot
ratio
单株Fe积累量
Fe accumulation
amount per plant (mg)
根系Fe吸收效率
Root Fe absorption efficiency (mg/g)
Fe生理效率
Fe physiological efficiency (kg/mg)
单株活性Fe含量
Active Fe accumulation amount per plant (mg)
NFe LFe NFe LFe NFe LFe NFe LFe NFe LFe NFe LFe
1 ZH505 0.87a 0.56b 0.31a 0.27b 0.86a 0.12b 4.10a 1.00b 1.01a 4.67b 15.82a 19.04a
JH158 1.06a 0.79b 0.28a 0.28a 0.41a 0.23b 1.78a 1.35b 2.59a 3.43b 17.24a 24.09b
FY1 0.96a 0.68b 0.21a 0.20a 0.56a 0.13b 3.29a 1.18b 1.71a 5.23b 18.19a 29.32b
ZH2 2.34a 1.91b 0.20a 0.19a 1.14a 0.31b 2.92a 1.03b 2.05a 6.16b 31.30a 21.65b
KM918 1.02a 0.74b 0.29a 0.32b 0.80a 0.24b 3.48a 1.33b 1.28a 3.08b 21.05a 16.63a
ZT1 0.92a 0.90a 0.37a 0.32b 0.50a 0.19b 2.00a 0.86b 1.84a 4.74b 20.97a 17.69a
HNY8 1.19a 1.02b 0.27a 0.26b 0.63a 0.23b 2.52a 1.10b 1.89a 4.43b 21.35a 22.57a
ZD808 1.37a 1.10b 0.23a 0.24b 0.55a 0.21b 2.12a 0.95b 2.49a 5.24b 19.53a 25.67b
平均Average 1.21C 0.96D 0.27C 0.26CD 0.68C 0.21F 2.74B 1.07D 1.79F 4.67A 20.18AB -22.66AB
变化Change (%) -20.66 -3.70 -69.12 -60.95 160.62 12.29
2 DF998 1.15a 0.81b 0.28a 0.28a 0.93a 0.22b 3.72a 1.22b 1.24a 3.68b 17.52a 23.91b
HD999 2.15a 1.72b 0.25a 0.28b 0.97a 0.39b 2.26a 1.05b 2.22a 4.41b 23.78a 24.70a
DY18 1.74a 1.20b 0.30a 0.26b 1.01a 0.29b 2.53a 1.16b 1.72a 4.14b 19.59a 15.88a
YF311 1.54a 1.10b 0.32a 0.28b 0.73a 0.26b 1.92a 1.08b 2.11a 4.23b 27.86a 21.96a
ZD619 1.61a 1.19b 0.28a 0.25b 0.79a 0.23b 2.26a 0.96b 2.04a 5.17b 23.30a 21.06a
DH605 1.25a 0.95b 0.27a 0.24b 0.70a 0.22b 2.59a 1.16b 1.79a 4.32b 19.95a 25.91b
QY9 1.55a 1.40a 0.20a 0.19a 0.97a 0.46b 3.73a 2.00b 1.60a 3.04b 22.99a 13.93b
平均Average 1.57A 1.20C 0.27C 0.25CD 0.87B 0.30E 2.61B 1.24D 1.80F 4.04B 22.00AB 20.93AB
变化Change (%) -23.57 -7.41 -65.52 -52.49 123.73 -4.86
3 BS2 0.94a 0.50b 0.25a 0.41b 0.30a 0.11b 1.58a 0.73b 3.13a 4.55b 22.87a 17.24a
CD418 1.38a 0.76b 0.25a 0.34b 0.88a 0.16b 3.14a 0.84b 1.57a 4.75b 16.73a 16.36a
QC99 1.40a 0.81b 0.23a 0.26b 0.69a 0.27b 2.65a 1.59b 2.03a 3. 00b 40.09a 17.76b
CD30 0.95a 0.59b 0.18a 0.24b 0.45a 0.13b 3.21a 1.18b 2.11a 4.54b 24.82a 16.30b
CY19 1.13a 0.73b 0.24a 0.28b 0.64a 0.16b 2.91a 1.00b 1.77a 4.56b 26.22a 19.34b
平均Average 1.19C 0.68E 0.23E 0.31B 0.59D 0.16F 2.70B 1.04D 2.01EF 4.15B 26.14A 17.45B
变化Change (%) -42.86 34.78 -72.88 -61.48 106.01 -33.24
4 BY1 1.62a 0.92b 0.25a 0.21b 1.2a 0.43b 4.00a 2.69b 1.35a 2.14b 20.92a 18.49a
HS9528 1.85a 1.31b 0.33a 0.32a 1.35a 0.29b 2.93a 0.91b 1.37a 4.52b 17.21a 21.66a
SAU1210 1.74a 1.33b 0.21a 0.21a 1.27a 0.77b 4.23a 3.35b 1.37a 1.73b 15.88a 19.09a
ZH212 1.49a 1.06b 0.25a 0.24a 0.97a 0.14b 3.34a 0.67b 1.54a 7.57b 22.63a 25.43a
FD2 1.03a 0.55b 0.29a 0.32b 0.82a 0.19b 3.57a 1.46b 1.26a 2.89b 22.38a 18.86a
ZH102 1.48a 0.8b 0.18a 0.21b 0.84a 0.13b 3.82a 0.93b 1.76a 6.15b 24.64a 24.77a
平均Average 1.54A 0.99D 0.25D 0.25CD 1.07A 0.33E 3.58A 1.64C 1.43G 3.06D 20.61AB 21.37AB
变化Change (%) -35.71 0.00 -69.16 -54.19 113.91 3.69
5 CD455 1.24a 0.57b 0.20a 0.30b 0.43a 0.15b 2.05a 1.15b 2.88a 3.80b 25.61a 19.28b
ZH311 1.63a 0.55b 0.19a 0.32b 0.54a 0.11b 2.16a 0.85b 3.02a 5. 00b 26.22a 19.95b
XY508 1.28a 0.88b 0.21a 0.30b 0.48a 0.18b 2.18a 0.90b 2.67a 4.89b 20.99a 38.47b
ZH211 1.69a 0.81b 0.22a 0.26b 0.79a 0.20b 2.55a 1.18b 2.14a 4.05b 16.73a 19.22a
CD189 1.23a 0.55b 0.22a 0.42b 0.47a 0.13b 2.14a 0.81b 2.62a 4.23b 17.76a 21.17b
MD118 1.20a 0.78b 0.22a 0.46b 0.70a 0.36b 3.18a 1.44b 1.71a 2.17b 22.69a 17.61a
平均Average 1.40B 0.71E 0.21F 0.34A 0.60D 0.20F 2.54B 1.14D 2.34E 3.63C 20.87AB 23.36AB
变化Change (%) -49.29 61.90 -66.67 -55.12 55.13 11.93

Table 5

Traits of different low iron-tolerant maize varieties"

类别
Class
品种
Varieties
PH SD VL UL LA SPAD RL TRL RTN RSA RAD RV RDW SDW PDW R/S FeAA RFeA FePE AFeC
Fe高效 NFe ZH2 40.4a 6.2a 6a 4a 195.6a 43.3ab 27.0bc 2 121.2a 4 607.7a 412.1a 0.6bcd 6.4a 0.4ab - 2.0a - 2.3a 0.2efg - 1.1a - 2.9b 2.1fg -31.3a
HD999 36.5b 6.2a 6a 4a 187.8a 39.7bcde 27.7abc 1 973.7a 3 787.0ab 405.3a 0.7bc 6.6a 0.4a - 1.7b - 2.2a 0.3cd - 1.0b - 2.3c 2.2fg -23.8ab
QY9 42.3a 5.6a 6a 4a 165.6ab 41.7abcd 22.3de 1 275.2cde 3 077.3bc 257.4c 0.6bc 4.1cd 0.3d - 1.3cd - 1.6c 0.2fg - 1.0b - 3.7a 1.6g -22.9abc
平均Average 39.7A 6.0A 6A 4A 183.0A 41.6A 25.7B 1 790.0A 3 824.0A 358.3A 0.6A 5.7A 0.4A - 1.7A - 2.0A 0.2B - 1.0A - 3.0A 1.9C -26.0A
变异系数CV (%) 7.4 5.4 0 0 8.5 4.3 11.4 25.3 20.0 24.4 2.4 23.9 24.7 20.3 20.5 13.3 - 9.6 24.8 16.4 -17.6
LFe ZH2 40.9a 5.6a 6a 4a 158.9ab 42.3abc 31.7a 1 587.6b 3 043.0bc 307.4b 0.6bcd 4.8bc 0.3c - 1.6b - 1.9bc 0.2fg - 0.3d - 1.0d 6.2a -21.6abc
HD999 35.3bc 5.0b 5c 3c 159.1ab 39.1cde 22.3de 1 498.6bcd 2 260.0cd 318.2b 0.7abc 5.4b 0.4b - 1.4c - 1.7cd 0.3bc - 0.4cd - 1.1d 4.4b -24.7ab
QY9 42.3a 5.1b 5c 3.7b 171.1a 38.9cde 23.8cd 1 055.7ef 2 385.0c 206.3de 0.6bcd 3.2ef 0.2de - 1.2de - 1.4de 0.2fg - 0.5c - 2.0c 3.0def -13.9c
平均Average 39.5A 5.2B 5.3B 3.6A 163.0B 40.1A 25.9B 1 380.6B 2 562.7C 277.3B 0.6A 4.5B 0.3B - 1.4A - 1.7B 0.2B - 0.4B - 1.4C 4.5A -20.1BC
变异系数CV (%) 9.4 6.0 -10.8 -14.3 4.3 4.8 19.5 20.6 16.4 22.3 5.0 25.2 23.3 16.1 -15.4 23.6 19.4 -40.8 34.5 -27.6
低Fe效应(%) -0.5 -13.3 -11.7 -10.0 -10.9 -3.6 0.7 -22.9 -32.9 -22.6 0.0 -20.1 -25.0 -17.6 -15.0 0.0 -60.0 -53.3 136.8 -22.7
Fe低效 NFe CD455 36.1b 5.3ab 5.7ab 3c 166.4a 44.0a 28.4abc 1 548.6bc 2 954.3bc 257.9c 0.5d 3.4de 0.2e - 1.0e - 1.2e 0.2efg - 0.4cd - 2.1c 2.9cde -25.6ab
CD189 32.6cd 4.8b 5c 3c 128.5bc 38.1de 30.1ab 1 215.4def 3 068.3bc 220.6cd 0.6cd 3.2ef 0.2de - 1.0e - 1.2e 0.2def - 0.5c - 2.1c 2.6efg -17.8bc
CD30 31.2d 4.0c 5.3bc 3c 97.7cd 36.8e 26.0bcd 930.3f 2 393.3c 169.5ef 0.6cd 2.5fg 0.1fg - 0.8f - 1.0f 0.2g - 0.5c - 3.2ab 2.1fg -24.8ab
平均Average 33.3B 4.7B 5.3B 3B 130.9C 39.6A 28.2A 1 231.5C 2 805.3B 216.0C 0.6A 3.0C 0.2C - 0.9B - 1.1C 0.2B - 0.5B - 2.5B 2.5B -22.7B
变异系数CV (%) 7.5 -13.5 6.3 0 26.3 9.7 7.4 25.1 12.9 20.5 5.1 16.6 22.9 -13.3 14.4 10.0 - 4.4 26.2 15.4 -19.0
LFe CD455 23.7ef 4.0c 4.3d 3c 85.6de 12.3g 11.2g 563.0g 953.3e 118.6g 0.7abc 2.0g 0.1fg - 0.4g - 0.6g 0.3b - 0.2e - 1.2d 3.8bcd -19.3bc
CD189 20.7f 3.7cd 4d 2d 51.3e 9.3g 14.1fg 629.2g 1 525.0de 131.8fg 0.7ab 2.2g 0.2f - 0.4g - 0.6g 0.4a - 0.1e - 0.8d 4.2bc -21.2abc
CD30 26.0e 3.4d 5c 3c 60.9de 24.6f 17.8ef 530.5g 882.3e 128.2fg 0.8a 2.5fg 0.1g - 0.5g - 0.6g 0.2de - 0.1e - 1.2d 4.5b -16.3bc
平均Average 23.5C 3.7C 4.4C 2.7B 65.9D 15.4B 14.4C 574.2D 1 120.2D 126.2D 0.7A 2.3D 0.1D - 0.4C - 0.6D 0.3A - 0.1C - 1.1C 4.2A -18.9C
变异系数CV (%) 11.3 8.1 11.5 21.7 26.8 52.7 22.8 8.8 31.5 5.4 7.5 11.8 18.9 -10.3 - 3.5 28.6 - 8.5 19.6 8.9 -13.0
低Fe效应(%) -29.4 -21.3 -17.0 -10.0 -49.7 -61.1 -48.9 -53.4 -60.1 -41.6 16.7 -23.3 -50.0 -55.6 -45.5 50.0 -80.0 -56.0 68.0 -16.7
[1] Rajniak J, Giehl R F, Chang E, et al. Biosynthesis of redox-active metabolites in response to iron deficiency in plants. Nature Chemical Biology, 2018,14(5):442-450.
doi: 10.1038/s41589-018-0019-2 pmid: 29581584
[2] Balk J, Pilon M. Ancient and essential:the assembly of iron-sulfur clusters in plants. Trends in Plant Science, 2011,16(4):218-226.
pmid: 21257336
[3] Palmer C M, Guerinot M L. Facing the challenges of Cu,Fe and Zn homeostasis in plants. Nature Chemical Biology, 2009,5(5):333-340.
pmid: 19377460
[4] 刘自飞, 高丽丽, 王盛锋, 等. 常见铁肥品种及其使用效果综述. 中国土壤与肥料, 2012(6):5-13.
[5] 刘仁泽, 单洪瑜, 郭长虹, 等. 四种紫花苜蓿响应缺铁生理反应的比较. 分子植物育种, 2018,16(10):3355-3360.
[6] 高丽, 周健民, 史衍玺. 石灰性土壤上花生耐低铁品种的筛选. 中国油料作物学报, 2008(2):36-41.
[7] 余俊, 王忆, 吴婷, 等. 金冠/中砧1号苹果树耐低铁胁迫的评价. 园艺学报, 2015,42(4):769-777.
doi: 10.16420/j.issn.0513-353x.2015-0077
[8] Dell’Orto M, Nisi PD, Vigani G, et al. Fe deficiency differentially affects the vacuolar proton pumps in cucumber and soybean roots. Frontiers in Plant Science, 2013 (4):326.
[9] 赵婧, 邱强, 张鸣浩, 等. 低铁胁迫与大豆品种铁效率间的关系. 中国农学通报, 2016,32(30):49-55.
[10] Ciaffi M, Paolacci A R, Celletti S, et al. Transcriptional and physiological changes in the S assimilation pathway due to single or combined S and Fe deprivation in durum wheat (Triticum durum L.) seedlings. Journal of Experimental Botany, 2013,64(6):1663-1675.
doi: 10.1093/jxb/ert027 pmid: 23390290
[11] Zamboni A, Celletti S, Zenoni S, et al. Root physiological and transcriptional response to single and combined S and Fe deficiency in durum wheat. Environmental & Experimental Botany, 2017,143:172-184.
[12] Jia X M, Zhu Y F, Hu Y, et al. Tolerance to iron-deficiency stress of three apple rootstock species in hydroponic system. Agricultural Science and Technology, 2018,19(3):21-30.
[13] 章爱群, 斯琴朝克图, 刘牛, 等. 低铁胁迫对不同耐低磷玉米生长及磷、铁养分吸收的影响. 作物杂志, 2014(6):111-115.
[14] 龙文靖, 辜涛, 万年鑫. 低铁胁迫对玉米苗期根系生长和铁素吸收利用的影响. 中国生态农业学报, 2017,25(8):1163-1172.
[15] 王树圆. 玉米在我国畜牧业中的地位和作用. 中国农业信息, 2014(7):252.
[16] 陆海峰, 潘英华, 卿冬进, 等. 缺水和缺铁胁迫对玉米光合作用特性和根生长的影响. 基因组学与应用生物学, 2007,26(1):44-49.
[17] 张茂林, 夏河山, 闫素清. 盐酸浸取火焰原子吸收光谱法测定小麦和玉米中的锌、铁含量. 河南工业大学学报(自然科学版), 2004,25(4):72-73.
[18] Chen C J, Chen H, Zhang Y, et al. TBtools:An integrative toolkit developed for interactive analyses of big biological data. Malecular Plant, 2020,13(8):1194-1202.
[19] Zha Q, Wang Y, Zhang X Z, et al. Both immanently high active iron contents and increased root ferrous uptake in response to low iron stress contribute to the iron deficiency tolerance in Malus xiaojinensis. Plant Science, 2014,214(4):47-56.
doi: 10.1016/j.plantsci.2013.10.002
[20] 龙文靖, 万年鑫, 朱从桦, 等. 不同供Fe3+水平对玉米苗期生长的影响. 玉米科学, 2015,23(4):78-83,91.
[21] 徐健钦, 陈旭蕾, 于福同. 不同铵硝配比条件下BPDS-Fe(Ⅱ)对玉米幼苗耐低铁胁迫差异的影响. 中国农业科学, 2017,50(7):1223-1233.
doi: 10.3864/j.issn.0578-1752.2017.07.005
[22] 牛乐, 位晶, 唐宏亮. 不同氮效率基因型玉米根系对低铁胁迫的响应. 安徽农业科学, 2019,47(3):136-140.
[23] 龙文靖, 万年鑫, 辜涛, 等. 玉米苗期耐低铁能力的综合评价及其预测. 植物遗传资源学报, 2015,16(4):734-742.
[24] 周晓今, 陈茹梅, 范云六. 植物对铁元素吸收、运输和储存的分子机制. 作物研究, 2012,26(5):605-610.
[25] Hell R, Stephan U W. Iron uptake,trafficking and homeostasis in plants. Planta, 2003,216(4):541-551.
doi: 10.1007/s00425-002-0920-4 pmid: 12569395
[26] 陈旭蕾, 徐健钦, 于福同. 不同玉米自交系苗期铁效率差异研究. 中国农业大学学报, 2017,22(11):49-57.
[1] Dong Huaiyu, Dong Zhi, Liu Kejie, Wang Lijuan, Liu Peibin, Hou Zhiyan. Effects of Different Maize Straw Returning Modeson Occurrence of Main Diseases of Maize [J]. Crops, 2020, 36(6): 104-108.
[2] Lin Miao, Zhang Qiuzhi, Shi Liyu, Liu Bei, Wang Hongwu, Pan Jinbao. Genome-Wide Association Study of Digestibility of Straw in Maize [J]. Crops, 2020, 36(6): 23-29.
[3] Jian Liqun, Zhang Yifei, Yang Kejun, Wang Yufeng, Chen Tianyu, Zhang Jiwei, Zhang Jinsong, Li Qing, Liu Tianhao, Xiao Shanshan, Peng Cheng, Wang Baosheng. Effects of Low Temperature under Different Phases between Sowing and Seedling Periods on Growth and Physiological Resistance of Maize Seedlings [J]. Crops, 2020, 36(6): 61-68.
[4] Yan Xiaoguang, Du Yanwei, Li Hong, Dong Hongfen, Li Aijun, Wang Guoliang, Zhou Nan. Error Analysis of Moisture Content in Maize Seeds by Quick Water-Content Measuring Method [J]. Crops, 2020, 36(5): 170-173.
[5] Wu Qiong, Ding Kaixin, Yu Minglong, Huang Wenting, Zuo Guanqiang, Feng Naijie, Zheng Dianfeng. Effects of New Plant Growth Regulator B2 on Photosynthetic Fluorescence Characteristics and Yield of Maize [J]. Crops, 2020, 36(5): 174-181.
[6] Wu Weihua, Liu Jiayou, Yuan Liuzheng, Yan Haixia, Fu Jiafeng, Wang Huiqiang, Wang Rui, Li Teng, Liu Kang. Effects of High Temperature Stress at Booting Stage on Maize Hybrids [J]. Crops, 2020, 36(5): 59-64.
[7] Li Zhongnan, Wang Yueren, Zhang Yanhui, Wu Shenghui, Qu Haitao, Xu Zhengxue, Li Guangfa. Genetic Analysis of Super Multiple Ear Row Number in DH Line 15D969 of Maize [J]. Crops, 2020, 36(5): 88-92.
[8] Wang Li, Wang Zuoping, Zhang Zhongbao, Bai Ling, Wu Zhongyi. Screening of Strongly Expressed Promoters in Immature Maize Kernels [J]. Crops, 2020, 36(4): 114-120.
[9] Li Qiang, Kong Fanlei, Yuan Jichao. Effects of Interannual Meteorological Factors on Maize Dry Matter Accumulation and Yield in the Hilly Area of Southwest China [J]. Crops, 2020, 36(4): 150-157.
[10] Zheng Fei, Wang Lixia, Liu Ruixiang, Kong Lingjie, Chen Yanping, Yuan Jianhua, Cui Yakun. Morphological and Physiological Differences of Maize Inbred Lines at Seedling Stage under Waterlogging Stress [J]. Crops, 2020, 36(4): 158-163.
[11] Yuan Wenya, Zhao Xiaolei, Zhou Xumei, Wang Lei, Peng Bo, Wang Yi. The Development of waxy Gene Function Marker and Its Application in Waxy Maize Breeding [J]. Crops, 2020, 36(4): 99-106.
[12] He Wanchun, Huang Kai, Ling Peng, Chen Zixiong, Wang Jingcai, Pan Xiaochun, Zhang Juanning, Li Pengcheng. Effects of Different Ratio of Organic Fertilizer Nitrogen to Fertilizer Nitrogen on the Absorption Capacity and Morphology of Potato Roots [J]. Crops, 2020, 36(3): 132-136.
[13] Song Qiulai, Wang Qi, Feng Yanjiang, Sun Yu, Zeng Xiannan, Lai Yongcai. Effects of Paddy-Upland Rotation and Straw Returning on Soil Related Enzyme Activities in Cold Region [J]. Crops, 2020, 36(3): 149-153.
[14] Liu Jian, Sun Bin, Zhang Weiqiang, Feng Xiaoxi, Zhang Jiyang, Ning Dongfeng, Qin Anzhen, Liu Zhandong, Qiao Miao, Shen Hongli, Xu Yan. Effects of Chemical Regulating on Grain Harvest Quality and Water Use Efficiency in Summer Maize [J]. Crops, 2020, 36(3): 161-168.
[15] Li Ruijie,Tang Huihui,Wang Qingyan,Xu Yanli,Fang Mengying,Yan Peng,Dong Zhiqiang,Zhang Fenglu. Effects of 5- Aminolevulinic Acid and Ethylene Compounds on Photosynthetic Characteristics and Yield of Spring Maize in Northeast China [J]. Crops, 2020, 36(2): 125-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!