Crops ›› 2022, Vol. 38 ›› Issue (2): 182-188.doi: 10.16035/j.issn.1001-7283.2022.02.025

Previous Articles     Next Articles

Effects of Selenium Concentration, Application Stage and Method on Yield and Grain Selenium Content of Different Millet Varieties

Liu Panfeng(), Qin Jie, Hao Shuangnan, Wang Danli, Yang Wude, Feng Meichen, Song Xiaoyan()   

  1. College of Agriculture, Shanxi Agricultural University/State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Taiyuan 030031, Shanxi, China
  • Received:2021-05-18 Revised:2021-08-03 Online:2022-04-15 Published:2022-04-24
  • Contact: Song Xiaoyan E-mail:liupanfeng2020@126.com;songxiaoy123@126.com

Abstract:

Selenium deficiency in soil and human body is a major problem at present. It is a great significance to study the effects of selenium application concentration, stage and method on yield and grain selenium content of different millet varieties. The field orthogonal design experiment was adopted and ‘Jingu 28’ and ‘Jingu 21’ were used as the tested varieties. Different concentrations of sodium selenite (0.00, 5.48, 10.96, 21.92, 43.84, 65.76, 98.64, 147.96g/ha) were applied to the soil and leaves at the jointing and heading stage to study the effects of various factors on the yield and grain selenium contents of different millet varieties. The results showed that the yield of millet increased first and then decreased with the increase of selenium concentration, and the yield was the highest when the selenium concentration was 65.76g/ha. Selenium content in grain was positively correlated with selenium application concentration and increased with the increase of selenium application. The yield and selenium content of grains were related to millet variety, selenium application stage and selenium application method. Spraying sodium selenite with a concentration of 25.41g/ha on the leaf surface of ‘Jingu 21’ at the heading stage was the most effective selenium enhancement scheme for millet.

Key words: Millet, Concentration of selenium application, Selenium application stage, Selenium application method, Yield, Grain selenium content

Table 1

L16 (8×23) Orthogonal test scheme"

处理
Treatment
施硒浓度(A)
Selenium concentration
品种(B)
Variety
施硒时期(C)
Selenium application stage
施硒方式(D)
Selenium application method
T1 1 1(晋谷28号) 1(拔节期) 1(土壤施硒)
T2 1 2(晋谷21号) 2(抽穗期) 2(叶面喷施)
T3 2 1 1 1
T4 2 2 2 2
T5 3 1 1 2
T6 3 2 2 1
T7 4 1 1 2
T8 4 2 2 1
T9 5 1 2 1
T10 5 2 1 2
T11 6 1 2 1
T12 6 2 1 2
T13 7 1 2 2
T14 7 2 1 1
T15 8 1 2 2
T16 8 2 1 1

Table 2

Effects of each factor on millet yield kg/hm2"

处理Treatment 产量Yield
T1 5416.66
T2 5677.23
T3 5855.02
T4 6019.55
T5 6037.14
T6 6219.78
T7 6085.82
T8 6306.68
T9 6168.54
T10 6287.01
T11 6270.85
T12 6523.26
T13 5971.33
T14 6007.99
T15 5791.65
T16 5885.88

Table 3

Visual analysis of the effects of each factor on millet yield"

处理
Treatment
施硒浓度(A)
Selenium concentration
品种(B)
Variety
施硒时期(C)
Selenium application stage
施硒方式(D)
Selenium application method
K1 11 093.89 47 597.00 48 098.79 48 131.40
K2 11 874.57 48 927.39 48 425.60 48 392.99
K3 12 256.91
K4 12 392.49
K5 12 455.55
K6 12 794.12
K7 11 979.32
K8 11 677.53
k1 5 546.95 5 949.63 6 012.35 6 016.43
k2 5 937.29 6 115.92 6 053.20 6 049.12
k3 6 128.46
k4 6 196.25
k5 6 227.77
k6 6 397.06
k7 5 989.66
k8 5 838.77
极差Range (R) 935.29 166.30 40.85 32.70
调整极差Adjustment range(R’) 550.79 204.51 50.24 40.21
主次序Principal order A>B>C>D
最优组合Optimal combination A6B2C2D2

Table 4

Variance analysis of the effects of each factor on millet yield"

方差来源
Source of variance
平方和
Sum of squares
自由度
df
均方
Mean square
F
F-value
P
P-value
显著性
Significance
施硒浓度(A)Selenium concentration 982 500.835 7 140 357.262 64.003 0.000 **
品种(B)Variety 110 619.656 1 110 619.656 50.443 0.001 **
施硒时期(C)Selenium stage 6 675.544 1 6 675.544 3.044 0.141 NS
施硒方式(D)Selenium application method 4 276.724 1 4 276.724 1.950 0.221 NS
误差Error 10 964.816 5 2 192.963
总计Total 583 424 896.086 16
校正的总计Total of correction 1 115 037.575 15

Table 5

Significance test of millet yield regression model"

模型
Model
平方和
Sum of squares
自由度
df
均方
Mean square
F
F-value
P
P-value
显著性
Significance
回归Regression 696 214.967 2 348 107.484 10.805 0.002 **
残差Residual error 418 822.608 13 32 217.124
总计Total 1 115 037.575 15

Table 6

Effects of each factor on grain selenium content of millet mg/kg"

处理Treatment 籽粒硒含量Grain selenium content
T1 0.187
T2 0.188
T3 0.199
T4 0.247
T5 0.250
T6 0.210
T7 0.243
T8 0.287
T9 0.328
T10 0.394
T11 0.315
T12 0.449
T13 0.447
T14 0.353
T15 0.517
T16 0.375

Table 7

Intuitive analysis of the effects of each factor on grain selenium content of millet"

处理
Treatment
施硒浓度(A)
Selenium concentration
品种(B)
Variety
施硒时期(C)
Selenium application stage
施硒方式(D)
Selenium application method
K1 0.375 2.487 2.450 2.254
K2 0.446 2.503 2.540 2.735
K3 0.459
K4 0.530
K5 0.723
K6 0.764
K7 0.800
K8 0.893
k1 0.187 0.311 0.306 0.282
k2 0.223 0.313 0.317 0.342
k3 0.230
k4 0.265
k5 0.361
k6 0.382
k7 0.400
k8 0.446
极差Range (R) 0.132 0.002 0.011 0.060
调整极差Adjustment range(R’) 0.077 0.002 0.014 0.074
主次序Principal order A>D>C>B
最优组合Optimal combination A8B2C2D2

Table 8

Variance analysis of the effects of each factor on grain selenium content of millet"

方差来源
Source of variance
平方和
Sum of squares
自由度
df
均方
Mean square
F
F-value
P
P-value
显著性
Significance
施硒浓度(A)Selenium concentration 0.445 7 0.064 8.688 0.000 **
品种(B)Variety 0.000 1 0.000 0.029 0.866 NS
施硒时期(C)Selenium application stage 0.000 1 0.000 0.000 0.993 NS
施硒方式(D)Selenium application method 0.048 1 0.048 6.545 0.015 *
误差Error 0.271 37 0.007
总计Total 5.553 48
校正的总计Total of correction 0.765 47

Table 9

Significance test of grain selenium content regression model of millet"

模型
Model
平方和
Sum of squares
自由度
df
均方
Mean square
F
F-value
P
P-value
显著性
Significance
回归Regression 0.128 2 0.064 26.882 0.000 **
残差Residual error 0.031 13 0.002
总计Total 0.159 15
[1] Zhai H, Xue M G, Du Z K, et al. Leaching behaviors and chemical fraction distribution of exogenous selenium in three agricultural soils through simulated rainfall. Ecotoxicology and Environmental Safety, 2019, 173:393-400.
doi: S0147-6513(19)30192-7 pmid: 30797097
[2] Zhu S, Liang Y, Gao D, et al. Spraying foliar selenium fertilizer on quality of table grape (Vitis vinifera L.) from different source varieties. Scientia Horticulturae, 2017, 218:87-94.
doi: 10.1016/j.scienta.2017.02.025
[3] 陈析羽, 张浩, 汤虎, 等. 富硒食品的研究进展与展望. 中国食物与营养, 2018, 24(6):11-14.
[4] Fernandes B P, Valdemar F, Sampaio C A D C, et al. Genotypic variation and biofortification with selenium in brazilian wheat cultivars. Journal of Environmental Quality, 2018, 47(6):1371-1379.
doi: 10.2134/jeq2018.01.0045 pmid: 30512055
[5] 张莉, 于浩泉, 高德鹏, 等. 山西省谷子生产现状及原因分析. 中国种业, 2012(7):15-17.
[6] Schiavon M, Pilon-Smits E A H. The fascinating facets of plant selenium accumulation-biochemistry,physiology,evolution and ecology. New Phytologist, 2017, 213(4):1582-1596.
doi: 10.1111/nph.14378 pmid: 27991670
[7] 史丽娟, 白文斌, 曹昌林, 等. 外源硒对高粱产量、籽粒硒含量及品质的影响. 作物杂志, 2020(3):191-196.
[8] 杜少平, 马忠明, 薛亮. 喷施硒肥对砂田西瓜产量、品质及养分吸收的影响. 果树学报, 2020, 37(5):705-713.
[9] 蒋方山, 张海军, 吕连杰, 等. 叶面喷施亚硒酸钠对黑粒小麦籽粒硒含量、产量及品质的影响. 麦类作物学报, 2018, 38(12):1496-1503.
[10] Zahedi S M, Abdelrahman M, Hosseini M S, et al. Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium-nanoparticles. Environmental Pollution, 2019, 253: 246-258.
doi: 10.1016/j.envpol.2019.04.078
[11] 梁晶. 叶面喷施不同硒肥对谷子产量和籽粒硒含量的影响. 农业与技术, 2019, 39(9):19-21.
[12] 兰敏, 尹美强, 温银元, 等. 纳米硒对谷子生物量和微量元素含量的影响. 山西农业科学, 2020, 48(4):515-519.
[13] 穆婷婷, 杜慧玲, 张福耀, 等. 外源硒对谷子生理特性、硒含量及其产量和品质的影响. 中国农业科学, 2017, 50(1):51-63.
[14] 吴季蓉, 王宏富. 不同生育时期喷施硒肥对谷子农艺性状及产量的影响. 山西农业科学, 2018, 46(4):595-598,619.
[15] 郭美俊, 郭平毅, 原向阳, 等. 叶面喷施亚硒酸钠对谷子光合特性及产量构成的影响. 核农学报, 2014, 28(6):1099-1107.
[16] 唐玉霞, 王慧敏, 刘巧玲, 等. 原子荧光法测定小麦中硒含量的研究. 华北农学报, 2009, 24(S1):218-220.
[17] 穆婷婷, 杜慧玲, 景小兰, 等. 外源硒对谷子产量因子及硒含量的影响. 作物杂志, 2017(1):73-78.
[18] 宋丽芳, 冯美臣, 张美俊, 等. 外源硒对苦荞生长发育及子粒硒含量的影响. 作物杂志, 2019(3):150-154.
[19] Ning N, Yuan X Y, Dong S Q, et al. Increasing selenium and yellow pigment concentrations in foxtail millet (Setaria italica L.) grain with foliar application of selenite. Biological Trace Element Research, 2016, 170(1):1-8.
doi: 10.1007/s12011-015-0435-z
[20] 高贞攀, 郭平毅, 原向阳, 等. 叶面喷施亚硒酸钠对谷子籽粒含硒量及品质的影响. 山西农业大学学报(自然科学版), 2015, 35(2):157-161.
[21] 刘庆, 田侠, 史衍玺. 施硒对小麦籽粒硒富集、转化及蛋白质与矿质元素含量的影响. 作物学报, 2016, 42(5):778-783.
[22] 张巽, 王宏富. 不同生育时期喷施硒肥对谷子籽粒含硒量的影响. 安徽农学通报, 2009, 15(14):85-86.
[23] 刘秀桃, 薛海龙, 李萍花, 等. 硒肥对谷子产量构成因子及其籽粒含硒量的影响. 现代农业科技, 2013(12):13-15.
[24] 穆婷婷, 张福耀, 李志华, 等. 不同时期施硒对谷子硒含量、有机硒转化率及谷子品质的影响. 华北农学报, 2018, 33(6):193-198.
[25] 张宇杰, 郭平毅, 郭美俊, 等. 外源硒矿粉对谷子保护酶活性、产量和籽粒中硒含量的影响. 中国农业科技导报, 2021, 23(5):153-159.
[26] 高慧雅, 张爱军, 赵丽. 叶面喷施锌硒肥对谷子抗氧化酶活性及籽粒锌硒含量的影响. 植物营养与肥料学报, 2020, 26(9):1724-1731.
[27] Wang J, Wang Z, Mao H, et al. Increasing Se concentration in maize grain with soil- or foliar-applied selenite on the Loess Plateau in China. Field Crops Research, 2013, 150(15):83-90.
doi: 10.1016/j.fcr.2013.06.010
[28] 赵春梅, 曹启民, 唐群锋, 等. 植物富硒规律的研究进展. 热带农业科学, 2010, 30(7):82-86.
[29] 孙发宇, 杨亮, 李磊, 等. 小麦硒强化研究进展. 生物技术进展, 2017, 7(5):433-438.
[30] Wang M, Ali F, Wang M, et al. Understanding boosting selenium accumulation in wheat (Triticum aestivum L.) following foliar selenium application at different stages,forms,and doses. Environmental Ence and Pollution Research, 2020, 27(1):717-728.
[31] 刘婷, 候运和, 郑甲成. 外源硒对碎米荠农艺性状及硒含量的影响. 湖北民族学院学报(自然科学版), 2018, 36(4):365-369.
[32] 陈火云, 谢义梅, 周灵, 等. 施硒方式对油菜生长和籽粒硒、镉、铅含量的影响. 河南农业科学, 2019, 48(3):49-54.
[33] Carey A M, Scheckel K G, Lombi E, et al. Grain accumulation of selenium species in rice (Oryza sativa L.). Environmental Science and Technology, 2012, 46(10):5557-5564.
doi: 10.1021/es203871j
[34] 张城铭, 周鑫斌. 不同施硒方式对水稻硒利用效率的影响. 土壤学报, 2019, 56(1):186-194.
[35] Rovira M, Giménez J, Martínez M, et al. Sorption of selenium (IV) and selenium (VI) onto natural iron oxides:goethite and hematite. Journal of Hazardous Materials, 2008, 150(2):279-284.
doi: 10.1016/j.jhazmat.2007.04.098
[36] 蒋光月. 15个紫云英品种的富硒能力比较研究. 安徽农学通报, 2019, 25(1):53-54.
[37] 马凤霞, 王沛, 张敏, 等. 叶面喷施硒肥对不同品种小麦产量及籽粒硒含量的影响. 山东农业大学学报, 2020, 51(1):25-30.
[38] 赵宇, 崔纪菡, 李顺国, 等. 不同品种(系)和地区对小米硒含量的影响. 河北农业科学, 2017, 21(4):1-4.
[39] 姚海坡, 董志强, 吕丽华, 等. 3个地区不同小麦品种籽粒硒含量分析. 华北农学报, 2020, 35(6):100-105.
[40] 张学林, 梅四伟, 郭天财, 等. 遗传和环境因素对不同冬小麦品种品质性状的影响. 麦类作物学报, 2010, 30(2):249-253.
[41] 牛西午. 黑米谷子品种晋谷28号选育研究. 中国农学会杂粮分会成立大会暨中国杂粮产业发展论坛. 北京: 中国农学会, 2004:233-241.
[42] 段宏凯, 王宏富, 王钰云, 等. 不同区域对谷子农艺性状的影响. 中国农业大学学报, 2018, 23(11):40-46.
[1] Wang Jian, Xu Ailing, Yang Na, Wang Ke, Xi Jilong, Wei Xiaodong, Zhang Jiancheng, Xi Tianyuan. Risk Assessment of Dry-Hot Wind in Different Sowing Dates of Wheat in Yuncheng Basin [J]. Crops, 2022, 38(2): 104-112.
[2] Hao Ruixuan, Sun Min, Ren Aixia, Lin Wen, Wang Peiru, Han Xuyang, Wang Qiang, Gao Zhiqiang. Research on the Relationship between Water Use and Dry Matter Accumulation and Quality of Wide Space Sowing Winter Wheat and the Regulation of Sowing Density [J]. Crops, 2022, 38(2): 119-126.
[3] Zhou Yuzhuang, Wang Rui, Yao Zhaosheng, Zhang Weijun, Liu Tao, Sun Chengming. Effects of Different Soil Surface Structures on Wheat Growth, Development and Yield [J]. Crops, 2022, 38(2): 127-133.
[4] Ma Ruiqi, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Chang Xuhong. Effects of Topdressing Nitrogen Rates on Yield and Photosynthetic Performance of Different Quality Types of Wheat [J]. Crops, 2022, 38(2): 134-142.
[5] Cao Liru, Lu Xiaomin, Wang Guorui, Dang Zun, Qiu Tian, Qiu Jianjun, Tian Yunfeng, Wang Zhenhua, Dang Yongfu. Effects of Foliar Spraying with Carbon-Adsorbed Polyglutamic Acid on Growth and Development of Maize [J]. Crops, 2022, 38(2): 158-166.
[6] Yuan Jingya, Li Wanming, Pang Xueqin, Huang Linhua, Qi Lan, Wang Shengmou, Xie Zhengwei, Qiu Yibiao, Lai Quanhao, Qin Nana. Effects of Different Top Pruning Layers at Flowering Stage on Agronomic Traits and Yield of Broad Bean [J]. Crops, 2022, 38(2): 167-173.
[7] Guo Yongxin, Zhou Hao, Sun Peng, Wang Yaqing, Ma Ke, Li Xiaorui, Dong Shuqi, Guo Pingyi, Yuan Xiangyang. Effects of Planting Patterns on Lodging Resistance and Yield of Zhangza 10 in Different Ecological Areas [J]. Crops, 2022, 38(2): 195-202.
[8] Li Feng, Gao Tongmei, Su Xiaoyu, Wei Libin, Wang Dongyong, Tian Yuan, Li Tongke, Yang Zihao, Wei Shuangling. Effects of Nitrogen Rate and Planting Density on Photosynthetic Rate, Yield, Nitrogen Use Efficiency of Sesame [J]. Crops, 2022, 38(2): 215-221.
[9] Han Lijun, Xue Zhangyi, Xie Hao, Gu Junfei. Effects of Dry-Wet Alternate Irrigation and Nitrification Inhibitor on Rice Yield and Soil Properties [J]. Crops, 2022, 38(2): 222-229.
[10] Zhao Lirong, Ma Ke, Zhang Liguang, Tang Sha, Yuan Xiangyang, Diao Xianmin. Analysis of Agronomic Traits and Quality of Foxtail Millet Varieties in Different Ecological Regions [J]. Crops, 2022, 38(2): 44-53.
[11] Gong Dan, Luo Gaoling, Zhang Xiaoyan, Zhu Xu, Yin Zhengong, Wang Suhua, Sha Aihua, Wang Lixia. Assessment of Adaptability for 34 New Cultivars of Cowpea under Different Eco-Environments [J]. Crops, 2022, 38(2): 89-95.
[12] Fang Mengying, Yan Peng, Lu Lin, Wang Qingyan, Dong Zhiqiang. Effects of Ethylene-Chlormequat-Potassium on Nitrogen Metabolism and Yield of Summer Maize under Different Nitrogen Levels [J]. Crops, 2022, 38(2): 96-103.
[13] Shi Xionggao, Pei Xuexia, Dang Jianyou, Zhang Dingyi. Research Progress on High-Yield, High-Quality, High-Efficiency and Ecology Cultivation of Wheat Micro-Sprinkling and Drip Fertigation [J]. Crops, 2022, 38(1): 1-10.
[14] Liu Menghong, Wang Zhijun, Li Hongyu, Zhao Haicheng, Lü Yandong. Effects of Fertilization Method and Nitrogen Application Rate on Yield, Quality and Nitrogen Utilization of Rice in Cold Region [J]. Crops, 2022, 38(1): 102-109.
[15] He Yuxuan, Li Yajuan, Zhou Mingzhuo, Sui Feng, Lü Weisheng, Zhang Jun, Zeng Yongjun, Huang Shan. Effects of Calcium Peroxide Application on Yield and Greenhouse Gas Emissions under Full-Rate Straw Returning in a Double Rice-Cropping System [J]. Crops, 2022, 38(1): 116-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!