Crops ›› 2023, Vol. 39 ›› Issue (1): 226-232.doi: 10.16035/j.issn.1001-7283.2023.01.034

Previous Articles     Next Articles

Estimation of Sugarcane Plant Height Based on UAV RGB Remote Sensing

Liang Yongjian1(), Wu Wenzhi2, Shi Zesheng1, Tang Liqiu1, Song Xiupeng3, Yan Meixin3, Guo Qiang1, Qin Changxian1, He Hongliang1, Zhang Xiaoqiu3()   

  1. 1Guangxi South Subtropical Agricultural Science Research Institute, Longzhou 532415, Guangxi, China
    2Guangzhou Jifei Technology Co., Ltd., Guangzhou 510000, Guangdong, China
    3Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Nanning 530004, Guangxi, China
  • Received:2021-09-25 Revised:2022-06-15 Online:2023-02-15 Published:2023-02-22

Abstract:

The purpose of this study is to investigate the feasibility and efficacy of sugarcane plant height estimation based on UAV RGB remote sensing, and get the estimate sugarcane plant height quickly and correctly at various growth stages. Images of sugarcane at several growth phases, including seedling, tillering, mid- elongation, late-elongation and maturation were collected using the UAV RGB remote sensing platform. The digital surface model (DSM) was generated by the software of Pix4D mapper and the plant height was extracted by the software of Eris Arcmap. The estimation models of plant height based on DSM and actual measurement at different growth stages were established. Coefficient of determination (R2), root mean square error (RMSE) and mean relative error (MRE) were used to evaluate the models. The results showed that the plant height extracted based on DSM at each growth stage was higher than that of actual measurement. The estimation model of whole growth season had the best fit and high prediction accuracy with R2 of 0.9611, RMSE of 0.1623 and MRE of 0.1102 in validation data set. The estimation model of seedling stage had the highest prediction accuracy, whereas the fits of other estimation models less than that of whole growth season and seedling stage, and their accuracies were also lower. The estimation model of maturity stage had the lowest accuracy and the worst fit. Therefore, it should be paid an attention to the applicability of plant height prediction model at different growth stages when estimate sugarcane plant height via extracting plant height from DSM images acquired based on UAV RGB remote sensing.

Key words: UAV, Remote sensing, Sugarcane, Plant height

Table 1

Main technical parameters of UAV (Jixia-XMISSION)"

参数Parameter 数值/类型Value/pattern
质量(含桨和电池)
Weight (includes paddle and battery) (kg)
2.25
轴距Wheel base (mm) 492
续航时间
Time of endurance (min)
35
定位系统Positioning system GNSS
定位精度PositionaI accuracy

垂直1.5cm+1ppm(RMS),水平1cm+ 1ppm(RMS)(1ppm是指飞行器每移动1km误差增加1mm)

Table 2

UAV remote sensing data acquisition and Pix4D mapper mosaic of the main parameters"

参数Parameter 数值Value
仿地飞行高度Ground-like altitude (m) 45
航向、旁向重叠率Rate of course, lateral overlap (%) 75
影像数量Number of images 145
空间分辨率Spatial resolution (cm) 1.38
影像比例Image scale factor 1/2(多比例)
彩色影像传感器尺寸
Size of color image sensor (mm×mm)
13.133×8.755

Fig.1

Diagrammatic diagram of measuring of sugarcane plant height by remote sensing and actual measurement(built by 3D point cloud data) a: plant height obtained by manual measurement, b: plant height measured by remote sensing"

Fig.2

Plant height extracted from DSM and DOM of sugarcane a-f: figure of DOM, g-l: figure of DSM. a, g: planting stage; b, h: seedling stage; c, i: tillering stage; d, j: mid-elongation stage; e, k: late-elongation stage; f, l: maturity stage"

Table 3

Descriptive statistical analysis of sugarcane plant height by actual measurement at different growth stage"

生育期
Growth stage
样本数
Number of samples
最小值
Minimum (m)
最大值
Maximum (m)
平均值
Mean (m)
标准差
Standard deviation (m)
苗期(5月)Seedling stage (May) 150 0.22 0.51 0.35 0.0737
分蘖期(6月)Tillering stage (June) 150 0.63 1.94 1.23 0.2468
伸长中期(8月)Mid-elongation stage (August) 150 0.89 2.07 1.51 0.2737
伸长后期(9月)Late-elongation stage (September) 150 1.43 3.12 2.24 0.3258
工艺成熟期(11月)Maturity stage (November) 150 1.58 3.15 2.47 0.3550
全生育期Whole growth stage 750 0.22 3.15 1.56 0.8074

Table 4

Descriptive statistical analysis of sugarcane plant height extracted based on DSM at different growth stages"

生育期
Growth stage
样本数
Number of samples
最小值
Minimum (m)
最大值
Maximum (m)
平均值
Mean (m)
标准差
Standard deviation (m)
苗期(5月)Seedling stage (May) 150 0.34 0.89 0.68 0.1088
分蘖期(6月)Tillering stage (June) 150 1.21 2.39 1.74 0.2885
伸长中期(8月)Mid-elongation stage (August) 150 1.30 2.72 2.03 0.2912
伸长后期(9月)Late-elongation stage (September) 150 2.01 3.83 2.75 0.3657
工艺成熟期(11月)Maturity stage (November) 150 1.82 3.59 3.00 0.3427
全生育期Whole growth stage 750 0.34 3.83 2.04 0.8714

Table 5

Regression models of sugarcane plant height in various growth stages extracted based on DSM and obtained by manual measurement"

生育期
Growth stage
一元线性回归模型
Simple linear
regression model
建模集
Calibration set
验证集
Validation set
R2 RMSE (m) MRE R2 RMSE (m) MRE
苗期(5月)Seedling stage (May) y=0.6203x-0.0782 0.8729 0.3419 0.3386 0.7387 0.0411 0.0344
分蘖期(6月)Tillering stage (June) y=0.7327x-0.0414 0.7804 0.5286 0.5113 0.8288 0.2854 0.1280
伸长中期(8月)Mid-elongation stage (August) y=0.8940x-0.2867 0.7813 0.5110 0.5042 0.7693 0.1554 0.1290
伸长后期(9月)Late-elongation stage (September) y=0.8666x-0.1058 0.7642 0.5059 0.4750 0.7846 0.2256 0.1621
工艺成熟期(11月)Maturity stage (November) y=0.8726x-0.1467 0.6863 0.5675 0.5380 0.6681 0.2066 0.1444
全生育期Whole growth season y=0.9229x-0.3131 0.9670 0.4980 0.4738 0.9611 0.1623 0.1102

Fig.3

Scatter plots of plant height extracted based on DSM and actual measurement"

Fig.4

Scatter plots of plant height of predicted and actual measurement at different growth stage"

[1] Li Y R, Yang L T. Sugarcane agriculture and sugar industry in China. Sugar Tech, 2015, 17(1):1-8.
doi: 10.1007/s12355-014-0342-1
[2] 陆中华. 甘蔗产量构成因素与产量的关系. 种子, 2002(3):38-39,65.
[3] 邓祖湖, 徐良年, 韦先明, 等. 经济遗传值在甘蔗选育种的应用研究Ⅰ. 经济遗传值及性状经济权重的确定. 中国糖料, 2011(1):39-43.
[4] 李纯佳, 徐超华, 覃伟, 等. 甘蔗株高相关性状数量研究. 中国糖料, 2015, 37(3):1-3.
[5] 张建, 谢田晋, 尉晓楠, 等. 无人机多角度成像方式的饲料油菜生物量估算研究. 作物学报, 2021, 47(9):1816-1823.
doi: 10.3724/SP.J.1006.2021.04211
[6] 谢国雪, 马灿达, 张秀龙, 等. 无人机精准监测甘蔗长势技术研究与应用. 国土资源信息化, 2021(1):6-11.
[7] 张建, 谢田晋, 杨万能, 等. 近地遥感技术在大田作物株高测量中的研究现状与展望. 智慧农业(中英文), 2021, 3(1):1-15.
[8] Tirado S B, Hirsch C N, Springer N M. UAV-based imaging platform for monitoring maize growth throughout development. Plant Direct, 2020, 4(6):e00230.
[9] Hu P C, Chapman S C, Wang X M, et al. Estimation of plant height using a high throughput phenotyping platform based on unmanned aerial vehicle and self-calibration:example for sorghum breeding. European Journal of Agronomy, 2018, 95:24-32.
doi: 10.1016/j.eja.2018.02.004
[10] Malambo L, Popescu S C, Murray S C, et al. Multitemporal field-based plant height estimation using 3D point clouds generated from small unmanned aerial systems high-resolution imagery. International Journal of Applied Earth Observation and Geoinformation, 2018, 64:31-42.
doi: 10.1016/j.jag.2017.08.014
[11] Maesano M, Khoury S, Nakhle F, et al. UAV-based LiDAR for high-throughput determination of plant height and above-ground biomass of the bioenergy grass arundo donax. Remote Sensing, 2020, 12(20):1-20.
doi: 10.3390/rs12010001
[12] Zhou L, Gu X, Cheng S, et al. Analysis of plant height changes of lodged maize using UAV-LiDAR data. Agriculture, 2020, 10(5):146.
doi: 10.3390/agriculture10050146
[13] 张宏鸣, 谭紫薇, 韩文霆, 等. 基于无人机遥感的玉米株高提取方法. 农业机械学报, 2019, 50(5):241-250.
[14] 郭海, 樊江川, 李英伦, 等. 基于RGB-D点云的田间原位玉米株高测量试验研究. 农机化研究, 2021, 43(10):102-109.
[15] 付虹雨, 崔国贤, 李绪孟, 等. 基于无人机遥感图像的苎麻产量估测研究. 作物学报, 2020, 46(9):1448-1455.
doi: 10.3724/SP.J.1006.2020.04020
[16] 郭涛, 颜安, 耿洪伟. 基于无人机影像的小麦株高与LAI预测研究. 麦类作物学报, 2020, 40(9):1129-1140.
[17] Yuan W A, Li J T, Bhatta M, et al. Wheat height estimation using LiDAR in comparison to ultrasonic sensor and UAS. Sensors, 2018, 18(11):3731.
doi: 10.3390/s18113731
[18] 颜安, 郭涛, 陈全家, 等. 基于无人机影像的棉花株高预测. 新疆农业科学, 2020, 57(8):1493-1502.
doi: 10.6048/j.issn.1001-4330.2020.08.014
[19] 王庆, 车荧璞, 柴宏红, 等. 基于无人机可见光与激光雷达的甜菜株高定量评估. 农业机械学报, 2021, 52(3):178-184.
[20] Sumesh K C, Ninsawat S, Som-ard J. Integration of RGB-based vegetation index,crop surface model and object-based image analysis approach for sugarcane yield estimation using unmanned aerial vehicle. Computers and Electronics in Agriculture, 2021, 180:105903.
doi: 10.1016/j.compag.2020.105903
[21] 杨琦, 叶豪, 黄凯, 等. 利用无人机影像构建作物表面模型估测甘蔗LAI. 农业工程学报, 2017, 33(8):104-111.
[22] Sofonia J, Shendryk Y, Phinn S, et al. Monitoring sugarcane growth response to varying nitrogen application rates:A comparison of UAV SLAM LiDAR and photogrammetry. International Journal of Applied Earth Observation and Geoinformation, 2019, 82:101878.
doi: 10.1016/j.jag.2019.05.011
[23] 牛庆林, 冯海宽, 杨贵军, 等. 基于无人机数码影像的玉米育种材料株高和LAI监测. 农业工程学报, 2018, 34(5):73-82.
[24] Weiss M, Baret F. Using 3D point clouds derived from UAV RGB imagery to describe vineyard 3D macro-structure. Remote Sensing, 2017, 9(2):111.
doi: 10.3390/rs9020111
[25] 李燕强, 张娟娟, 熊淑萍, 等. 不同冬小麦品种株高的高光谱估算模型. 麦类作物学报, 2012, 32(3):523-529.
[26] 鲁冬冬, 邹进贵. 三维激光点云的降噪算法对比研究. 测绘通报, 2019(增2):102-105.
[27] Bendig J, Bolten A, Bennertz S, et al. Estimating biomass of barley using crop surface models (CSMs) derived from UAV- based RGB imaging. Remote Sensing, 2014, 6(11):10395-10412.
doi: 10.3390/rs61110395
[28] 毛智慧, 邓磊, 赵晓明, 等. 利用无人机遥感提取育种小区玉米倒伏信息. 中国农学通报, 2019, 35(3):62-68.
[29] 赵立成, 段玉林, 史云, 等. 基于无人机DSM的小麦倒伏识别方法. 中国农业信息, 2019, 31(4):36-42.
[1] Su Lirong, Tan Yumo, Qin Fang, Li Qin, Zeng Chengcheng, Li Zhongyi, Wei Caihui, Dong Wenbin, Liang Jun, He Tieguang. Effects of Reduced Chemical Fertilizer on Yield and Main Agronomic Traits of Ratoon Sugarcane under Conditions of Returning Green Mung Bean/Black Bean into Field [J]. Crops, 2022, 38(6): 105-110.
[2] Yan Peng, Dong Xuerui, Lu Lin, Fang Mengying, Li Yijie, Wang Weizan, Dong Zhiqiang. Effects of NAA/KT Presoaking on Sugarcane Yield, Root Development and Lodging Resistance [J]. Crops, 2022, 38(4): 99-106.
[3] Tan Qinliang, Cheng Qin, Pan Chenglie, Zhu Pengjin, Li Jiahui, Song Qiqi, Nong Zemei, Zhou Quanguang, Pang Xinhua, Lü Ping. Effects of Drought Stress on Physiological Indexes of New Sugarcane Variety Guire 2 [J]. Crops, 2022, 38(3): 161-167.
[4] Cheng Qin, Tan Qinliang, Li Jiahui, Zhu Pengjin, Zhou Quanguang, Ou Kewei, Lu Yefei, Lü Ping, Pang Xinhua. Endogenous Hormones and Enzyme Activity Analysis in Sugarcane Varieties with Different Perennial Root Ages [J]. Crops, 2022, 38(3): 181-186.
[5] Liu Limin, Liu Hongjian, Li Aomei, He Weizhong. Effects of Light and Temperature on Photoautotrophic Rooting for in Vitro Sugarcane Plantlets [J]. Crops, 2022, 38(2): 153-157.
[6] Luo Hanmin, Xiong Faqian, Qiu Lihang, Liu Jing, Duan Weixing, Gao Yijing, Qin Xiayan, Wu Jianming, Li Yangrui, Liu Junxian. Application Study of Molecular Markers Associated with Traits in Sugarcane Molecular Breeding [J]. Crops, 2022, 38(2): 35-43.
[7] Li Jiahui, Cheng Qin, Ou Kewei, Tan Qinliang, Pang Xinhua, Zhou Quanguang, Lü Ping, Song Qiqi, Tang Yuwei, Zhu Pengjin. Comparison of Tiller Characters of Sugarcane Varieties (Lines) in Different Sugarcane Regions and Their Effects on Yield and Yield Components [J]. Crops, 2021, 37(5): 79-86.
[8] Guo Qiang, Ma Wenqing, Qin Changxian, Shi Zesheng, Peng Chong, Bi Dejin, He Hongliang, Liang Yongjian, Tang Liqiu. Comprehensive Evaluation of New Sugarcane Clones by DTOPSIS Method [J]. Crops, 2021, 37(4): 32-37.
[9] Fan Yegeng, Chen Rongfa, Yan Haifeng, Zhou Huiwen, Weng Mengling, Huang Xing, Luo Ting, Zhou Zhongfeng, Qiu Lihang, Wu Jianming. Effects of Sugarcane Rotation Green Fodder Corn and Peanut on Sugarcane Growth and Soil Properties [J]. Crops, 2021, 37(1): 104-111.
[10] Xu Lin, Wu Kaichao, Pang Tian, Deng Zhinian, Zhang Ronghua, Huang Chengfeng, Huang Hairong, Li Yijie, Liu Xiaoyan, Qin Wenxian, Wang Weizan. Effects of Root Promoting Agent on the Development and Yield in Single Bud of Sugarcane [J]. Crops, 2020, 36(6): 132-136.
[11] Ji Jingchun, Liu Jianli, Niu Yujie, Xuan Kefan, Jiang Yifei, Deng Haodong, Li Xiaopeng. Comparison of Estimation Methods for Growth Parameters of Winter Wheat Based on Full-Band Hyperspectral Data [J]. Crops, 2020, 36(6): 180-188.
[12] Tian Ting, Zhang Qing, Zhang Haidong. Application Research Progress of Unmanned Aerial Vehicle Remote Sensing in Crop Monitoring [J]. Crops, 2020, 36(5): 1-8.
[13] Xie Jinlan, Lin Li, Li Changning, Luo Ting, Mo Zhanghong. Effects of Intercropping Mungbean Straw Returning on Sugarcane Growth and Nitrogen Metabolism under Nitrogen Fertilizer Reduction [J]. Crops, 2020, 36(4): 164-169.
[14] Wang Meng, Sui Xueyan, Liang Shouzhen, Hou Xuehui, Liang Yongquan. Research on the Method of Extracting Crop Vegetation Coverage Using UAV Remote Sensing Technology [J]. Crops, 2020, 36(3): 177-183.
[15] Fan Yegeng,Yan Haifeng,Chen Rongfa,Qiu Lihang,Zhou Huiwen,Huang Xing,Weng Mengling,Wu Jianming,Li Yangrui,Wei Shengman. The Difference of Single Bud Seedling of the Third Generation of Sugarcane Virus-Free Plantlets with Different Seedcane Sizes and Transplanting Effect [J]. Crops, 2020, 36(2): 194-199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!