Crops ›› 2023, Vol. 39 ›› Issue (5): 170-178.doi: 10.16035/j.issn.1001-7283.2023.05.025

Previous Articles     Next Articles

Structure and Predicted Functional Analysis of Microbial Community of Millet Soil

Zhu Wenjuan(), Ren Yuemei(), Yang Zhong, Guo Ruifeng, Zhang Shou, Ren Guangbing   

  1. High Latitude Crops Institute to Shanxi Academy, Shanxi Agricultural University, Datong 037008, Shanxi, China
  • Received:2023-03-20 Revised:2023-05-31 Online:2023-10-15 Published:2023-10-16

Abstract:

Rhizosphere and non-rhizosphere microbes of different millets in different periods were taken as research objects, and amplicon sequencing was used to investigate the soil microbial structure and function. The results showed that the main phyla of bacteria were Proteobacteria and Bacteroidota which ranged from 33.11% to 56.01% and the lowest proportion was in mature stage. The main phyla of fungi was Ascomycota which ranged from 67.48% to 92.29%, and Ascomycota had a trend of increasing first and then decreasing. Spearman correlation analysis revealed that Bacteroidota in rhizosphere had significantly negative correlation with total phosphorous, Bacteroidota in non-rhizosphere had significantly positive correlation with pH, Ascomycota in non-rhizosphere had significantly positive correlation with total nitrogen, respectively. The bacteria were rich in functional diversity with seven functions at primary function, including metabolism, genetic information processing and so on, and 41 functions at secondary function, including amino acid metabolism, carbohydrate metabolism and so on. The fungi community consisted of nine types of nutrients, such as saprotroph and pathotroph types, and included 26 functional subgroups, such as undefined saprophytes and plant pathogens. In summary, millet soil microbial structure and function were rich.

Key words: Millet, Amplicon sequencing, Soil microbes, Community structure, Community function

Fig.1

Spectral relative abundance of bacteria (a) and fungi (b) at phyla level"

Table 1

Physical and chemical properties of soil samples in mature stage"

序号
Number
样品
Sample
土壤含水率
SWC (%)
pH 有机质
OM (g/kg)
全氮
TN (%)
全磷
TP (%)
全钾
TK (%)
速效钾
AK (mg/kg)
速效磷
AP (mg/kg)
碱解氮
AN (mg/kg)
1 MR29 1.90±0.00a 8.85±0.01a 23.65±5.35a 0.10±0.01a 0.06±0.00b 0.04±0.00a 209.50±5.50a 21.00±2.20b 109.90±14.10a
2 MN29 2.70±0.50a 8.84±0.09a 12.50±1.80a 0.09±0.00a 0.07±0.00b 0.03±0.01a 189.00±9.00a 23.25±1.35b 135.00±3.00a
3 MR14 2.95±0.15a 8.85±0.09a 17.85±1.35a 0.10±0.00a 0.07±0.00ab 0.04±0.00a 229.50±12.50a 28.70±1.70ab 127.20±45.80a
4 MN14 2.10±0.20a 8.82±0.03a 15.45±0.25a 0.10±0.00a 0.07±0.00ab 0.04±0.00a 209.00±25.00a 20.80±2.00ab 93.10±6.90a
5 MR8311 2.65±0.05a 8.89±0.08a 20.70±7.80a 0.10±0.00a 0.08±0.01a 0.03±0.00a 225.50±5.50a 30.85±1.85a 150.50±0.50a
6 MN8311 1.45±0.15a 8.89±0.11a 25.70±3.50a 0.09±0.01a 0.07±0.00a 0.04±0.00a 215.50±6.50a 26.15±1.75a 125.45±44.55a

Fig.2

Heatmap of bacteria (a, b) and fungi (c, d) based on Spearman correlation analysis “*”indicates significant correlation (P < 0.05),“**”indicates extremely significant correlation (P < 0.01)"

Fig.3

Spectral relative abundance of PICRUSt2-based predicted function for bacteria (hierarchy level one)"

Fig.4

PICRUSt2-based predicted function for bacteria (hierarchy level two)"

Fig.5

Spectral relative abundance of nutrient types prediction for fungi"

Fig.6

Spectral relative abundance of functional groups prediction for fungi"

[1] 王钰祺, 任玉蓉, 廖安邦, 等. 盐城滨海滩涂湿地典型植物群落土壤微生物组成与结构特征. 生态学报, 2023, 43(6):2336-2347.
[2] 孙建波, 畅文军, 李文彬, 等. 香蕉不同生育期根际微生物生物量及土壤酶活的变化研究. 生态环境学报, 2022, 31(6):1169-1174.
doi: 10.16258/j.cnki.1674-5906.2022.06.012
[3] Shu X Y, He J, Zhou Z H, et al. Organic amendments enhance soil microbial diversity, microbial functionality and crop yields: a meta-analysis. Science of the Total Environment, 2022, 829:154627.
doi: 10.1016/j.scitotenv.2022.154627
[4] 肖烨, 黄志刚, 李友凤, 等. 赤水河流域典型植被类型的土壤微生物群落结构与多样性. 水土保持研究, 2022, 29(6):275-283.
[5] 吴秋芳, 侯立江, 何玲敏, 等. 北艾根际与非根际土壤微生物多样性的高通量测序分析. 河南农业大学学报, 2021, 55(5):928-935.
[6] 李金玲.谷子耐盐品种的筛选、 鉴定及关键耐盐基因的挖掘. 上海: 上海师范大学, 2022.
[7] 程汝宏, 张婷, 王根平, 等. 新中国成立以来谷子育种的主要研究进展. 粮油食品科技, 2022, 30(4):68-75,10.
[8] 许小虎, 车宗贤, 赵旭, 等. 长期施用绿肥对小麦玉米间作土壤微生物的影响. 干旱地区农业研究, 2023, 41(1):33-44.
[9] 李伟, 冀思宇, 尹冶冰, 等. 西藏青稞和豌豆根际土壤微生物多样性及结构组成研究. 环境生态学, 2022, 4(7):62-69.
[10] 葛应兰, 孙廷. 马铃薯根际与非根际土壤微生物群落结构及多样性特征. 生态环境学报, 2020, 29(1):141-148.
doi: 10.16258/j.cnki.1674-5906.2020.01.016
[11] 康捷, 章淑艳, 韩韬, 等. 麻山药不同生长时期根际土壤微生物多样性及群落结构特征. 生物技术通报, 2019, 35(9):99-106.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-1041
[12] 陈彦君, 李俊生, 闫冰, 等. 转Cry1Ah基因抗虫玉米HGK60对生物多样性的影响. 环境科学研究, 2021, 34(4):964-975.
[13] 张犇, 郭悦, 刘丽文, 等. 控水干旱及PEG模拟干旱胁迫对谷子生理生化指标和SiVamp7基因转录水平的影响. 中国生物化学与分子生物学报, 2023, 39(1):96-107.
[14] 贺水玲, 赵霞, 吴明琦, 等. 外源NO和H2S对谷子种子萌发的影响. 作物杂志, 2023(2):138-144.
[15] 李凯, 罗世武, 王湛, 等. 地膜覆盖对旱区谷子根际土壤微生物特性及产量的影响. 山西农业大学学报(自然科学版), 2022, 42(5):1-8.
[16] 焦健宇, 郑粉莉, 王婧, 等. CO2浓度与温度升高对谷子各生育期土壤微生物生物量的影响. 干旱地区农业研究, 2022, 40(1):104-112,122.
[17] 汪其同, 朱婉芮, 刘梦玲, 等. 基于高通量测序的杨树人工林根际和非根际细菌群落结构比较. 应用与环境生物学报, 2015, 21(5):967-973.
[18] 中华人民共和国农业部. NY-T 1377- 2007 土壤pH的测定. 北京: 中国标准出版社, 2007.
[19] 环境保护部. HJ 613- 2011 土壤干物质和水分的测定重量法. 北京: 中国环境科学出版社, 2011.
[20] 中华人民共和国农业部.NY/T 1121.6-2006土壤检测第6部分: 土壤有机质的测定. 北京: 中国标准出版社, 2006.
[21] 中华人民共和国农业部. NY/T 889- 2004 土壤速效钾和缓效钾含量的测定. 北京: 中国标准出版社, 2004.
[22] 环境保护部. HJ 704- 2014 土壤有效磷的测定碳酸氢钠浸提―钼锑抗分光光度法. 北京: 中国环境科学出版社, 2014.
[23] Maarastawi S A, Frindte K, Linnartz M, et al. Crop rotation and straw application impact microbial communities in Italian and Philippine soils and the rhizosphere of Zea mays. Frontiers in Microbiology, 2018, 9:1023.
doi: 10.3389/fmicb.2018.01023
[24] 张含, 龚敏, 李妍昕, 等. 外源基质对乌红天麻根际土壤微生物多样性及酶活性的影响. 西南农业学报, 2023, 36(5):992-1001.
[25] 刘素, 冯海萍, 程彦弟, 等. 娃娃菜不同轮作模式下根际土壤微生物群落多样性特征. 干旱地区农业研究, 2023, 41(2):105-113.
[26] Lawson C, Wu S, Bhattacharjee A, et al. Metabolic network analysis reveals microbial community interactions in anammox granules. Nature Communications, 2017, 8:15416.
doi: 10.1038/ncomms15416 pmid: 28561030
[27] Cao S B, Du R, Li B K, et al. High-throughput profiling of microbial community structures in an ANAMMOX-UASB reactor treating high-strength wastewater. Applied Microbiology and Biotechnology, 2016, 100(14):6457-6467.
doi: 10.1007/s00253-016-7427-6 pmid: 27020296
[28] 刘丽丽, 李建辉, 郑雪良, 等. 早实薄皮核桃根际与非根际土壤微生物多样性分析. 浙江农业科学, 2022, 63(7):1487-1489.
[29] 王丽芳, 张德健, 张婷婷. 耕作方式对燕麦田土壤微生物群落多样性的影响. 作物杂志, 2021(3):57-64.
[30] 李茂森, 王丽渊, 杨波, 等. 生物炭对烤烟成熟期根际真菌群落结构的影响及功能预测分析. 农业资源与环境学报, 2022, 39(5):1041-1048.
[31] 齐慧敏, 车欣, 李梦, 等. 长白山区不同产地猪苓(鸡爪苓)菌核际土壤真菌多样性及其群落功能预测的研究. 吉林农业大学学报. (2010-10-29)[2023-04-10]. https://doi.org/10.13327/ j.jjlau.2021.1343.
[32] 孙建平, 刘雅辉, 左永梅, 等. 盐地碱蓬根际土壤细菌群落结构及其功能. 中国生态农业学报(中英文), 2020, 28(10):1618-1629.
[33] 方圆, 王娓, 姚晓东, 等. 我国北方温带草地土壤微生物群落组成及其环境影响因素. 北京大学学报(自然科学版), 2017, 53(1):142-150.
[34] 邓大豪, 邓涛, 周游, 等. 不同品种香蕉种植地土壤微生物多样性及其对土壤理化性质的响应. 热带作物学报, 2019, 40 (9):1858-1864.
[35] 靳晓拓, 周彦妤, 夏杨荣畅, 等. 多效唑对芒果园土壤细菌多样性的影响及PICRUSt基因功能预测分析. 热带作物学报, 2019, 40(4):807-814.
[36] 闫冰, 付嘉琦, 夏嵩, 等. 厌氧氨氧化启动过程细菌群落多样性及PICRUSt2功能预测分析. 环境科学, 2021, 42(8):3875-3885.
[37] 厉桂香, 马克明. 北京东灵山树线处土壤细菌的PICRUSt基因预测分析. 生态学报, 2018, 38(6):2180-2186.
[1] Yi Bing, Liu Jingang, Song Dianxiu, Wang Dexing, Zhao Mingzhu, Liu Xiaohong, Sun Enyu, Cui Liangji. Study on Land Productivity and Interspecific Competition of Sunflower and Millet Intercropping in Arid Areas [J]. Crops, 2023, 39(5): 219-223.
[2] Zhang Shangpei, Yang Junxue, Luo Shiwu, Wang Yong, Zhang Xiaojuan, Cheng Bingwen. Genetic Diversity and Yielding Ability Analysis of Agronomic Traits in Broom Corn Millet [J]. Crops, 2023, 39(5): 37-42.
[3] Zhao Haiyan, Zhao Lijie, Han Genlan, Wang Jiang, Wang Zijian, Nie Meng’en, Du Huiling, Yuan Xiangyang, Dong Shuqi. Effects of Nitrogen and Zinc Application on Root Morphology and Zinc Content in Foxtail Millet [J]. Crops, 2023, 39(4): 152-158.
[4] Zhao Yun, Feng Guojun, Hu Xiangwei, Wumaierjiang·Kuerban , Li Pengbing, Li Cuimei, Akebota·Muheyati . Preliminary Report on Selection of Herbicide-Resistant Foxtail Millet Varieties Suitable for Planting in Kashgar, Xinjiang [J]. Crops, 2023, 39(3): 126-133.
[5] Bai Kaihong, Abie Xiaobing, Xu Xiaoli, Jiang Na, Li Jianqiang, Luo Laixin. Analysis of Fungal Diversity in Seeds of Tartary Buckwheat from Liangshan, Sichuan Province [J]. Crops, 2023, 39(3): 260-266.
[6] He Shuiling, Zhao Xia, Wu Mingqi, Wang Dongsheng. Effects of Exogenous Nitric Oxide and Hydrogen Sulfide on the Germination of Foxtail Millet Seeds [J]. Crops, 2023, 39(2): 138-144.
[7] Ma Jiyu, Wang Shuang, Li Yun, Guo Zhenqing, Wang Jian, Lin Xiaohu, Han Yucui. Effects of Planting Density on Agronomic Characteristics and Yield of Foxtail Millet [J]. Crops, 2023, 39(2): 222-228.
[8] Wang Huimin, Li Minghao, Li Yun, Li Han, Wang Shuang, Lin Xiaohu, Han Yucui. Identification and Evaluation of Salt-Alkali Tolerance of Foxtail Millet Cultivars (Lines) at Germination Stage [J]. Crops, 2023, 39(2): 57-66.
[9] Bian Shuhui, Xing Guofang, Liang Xin, Zhang Shuwei, Wang Jianing, Ye Haoyu. Effects of Different Forms Selenium and Dosage on Foxtail Millet Growth and Physiology at Seedling Stage [J]. Crops, 2023, 39(1): 152-157.
[10] Wang Qi, Xu Yanli, Yan Peng, Dong Haosheng, Zhang Wei, Lu Lin, Dong Zhiqiang. Effects of Polyaspartic Acid-Chitosan on Agronomic Traits, Yield and Nitrogen Use of Spring Foxtail Millet [J]. Crops, 2023, 39(1): 58-67.
[11] Fan Duanyang, Yin Meiqiang, Wen Yinyuan, Guo Zhiyao, Wen Yanjie, Wang Yuqi, Sun Min, Gao Zhiqiang. Effects of Nitrate Nitrogen and Ammonium Nitrogen Ratio on the Growth and Nitrogen Utilization of Millet Seedlings [J]. Crops, 2023, 39(1): 96-102.
[12] Zhao Xiaoqin, Jia Ruiling, Liu Junxiu, Liu Yanming, Wen Yinhua, Shi Lili, Zhang Juanning, Ma Ning. Agronomic Traits and Genetic Diversity Analysis of 120 Foxtail Millet Germplasms [J]. Crops, 2022, 38(6): 61-69.
[13] Li Zhihua, Mu Tingting, Li Aijun. Breeding and Heterosis Analysis of Two Line Parents of Foxtail Millet Hybrids with Similar Growth Process [J]. Crops, 2022, 38(6): 75-81.
[14] Shi Guanyan, Wang Juanfei, Ma Huifang, Zhao Xiongwei. Correlation and Regression Analysis between Yield and Main Agronomic Traits in Foxtail Millet Hybrids [J]. Crops, 2022, 38(6): 82-87.
[15] Wang Jinxiang, Wang Yanzhi, Xing Lixuan, Liu Jianxia, Wang Runmei. Effects of GA3 on Root Growth and Osmotic Regulation of Lübaonuo Broomcorn Millet Seedlings under Salt Stress [J]. Crops, 2022, 38(6): 98-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!