Crops ›› 2024, Vol. 40 ›› Issue (2): 54-61.doi: 10.16035/j.issn.1001-7283.2024.02.007

Previous Articles     Next Articles

Cloning and Expression Analysis of Potato StCWIN1 Gene Promoter and Its Role under Drought Stress

Zhang Yu1(), Yang Wenjing1, Liu Xuan1, Nie Fengjie1, Zhang Li1, Shi Lei1, Zhang Guohui2, Guo Zhiqian2, Gong Lei1()   

  1. 1Research Center of Agricultural Biotechnology, Ningxia Academy of Agriculture and Forestry Sciences /Ningxia Key Laboratory of Agricultural Biotechnology, Yinchuan 750002, Ningxia, China
    2Guyuan Branch of Ningxia Academy of Agriculture and Forestry Sciences, Guyuan 756000, Ningxia, China
  • Received:2023-02-21 Revised:2023-03-05 Online:2024-04-15 Published:2024-04-15

Abstract:

Cell wall invertase (CWIN) is a key enzyme for stress responses and sucrose metabolism in source and sink tissues. In this study, the promoter sequence of StCWIN1 was cloned by genomic walking, and its cis-regulatory elements were analysed by using PlantCARE. A GUS-fused StCWIN1 promoter expression vector was constructed and subsequently transformed into Arabidopsis thaliana. Promoter activity, tissue expression characteristics and responsiveness to drought stress were investigated by histochemical staining and real-time quantitative PCR. The results showed that the StCWIN1 promoter was 1956 bp long and contained enhancer- regulated, phytohormone-responsive, protective/stress-responsive and light-responsive elements. The expression activity of StCWIN1 promoter were higher in roots, stigmas, and pods than other tissues. The expression of GUS in leaves of Arbidopsis Thaliana with StCWIN1 promoter was higher than that of wild type, and the value was significantly reduced under drought stress. The identification of the active StCWIN1 promoter in the present study suggests that StCWIN1 may be involved in the development of organs such as roots, flowers and fruit pods, and may also function in response to drought stress.

Key words: Solanum tuberosum L., Cell wall invertase, Promoter, GUS activity, Drought stress, Expression analysis

Table 1

Primers used in this study"

引物名称Primer name 引物序列Primer sequence (5’-3’) 用途Function
pCWIN-NeGW
F1:AACATTTTTCACATCAACCGTG
F2:GATGAAACAGTTCCACACACTACC
启动子扩增
pCWIN-positive selection
F:CAAATGATAAGTTACACCATC
R:TTTAAATCAGATTTCTACGAG
阳性植株筛选
GUS-RT-F/R
F:ATACCGAAAGGTTGGGCAGG
R:CGGCAATAACATACGGCGTG
实时定量GUS基因
Actin
F:GGTAACATTGTGCTCAGTGGTGG
R:AACGACCTTAATCTTCATGCTGC
实时定量内参基因

Fig.1

Amplified sequence of StCWIN1 gene promoter M: DL2000; 1: Amplified product of the promoter sequence."

Fig.2

Regulatory elements in StCWIN1 promoter"

Table 2

Analysis of regulatory elements in StCWIN1 promoter"

元件Element 数量Amount 位置Position 序列Sequence 功能Function
ERE

3

993(+)
1018(-)
1016(+)
ATTTTAAA

乙烯响应元件

Box 4

3

737(+)
1559(-)
1098(-)
ATTAAT

光响应元件

ABRE
2
812(+)
1259(+)
ACGTG
脱落酸响应元件
O2-site
2
749(-)
1672(-)
GATGATGTGG/GTTGACGTGA
参与玉米蛋白代谢调控元件
CGTCA-motif 1 1606(+) CGTCA 茉莉酸甲酯响应元件
TGA-element 1 78(+) AACGAC 生长素响应元件
LTR 1 604(+) CCGAAA 低温胁迫响应元件
TC-rich repeats 1 1286(-) GTTTTCTTAC 防御及胁迫响应元件
ARE 1 1369(+) AAACCA 厌氧诱导必需的调控元件
MYB 1 503(+) TAACCA MYB转录因子作用元件
circadian 1 179(-) CAAAGATATC 昼夜节律调节元件

Fig.3

GUS staining in different tissues of transgenic PStCWIN1-GUS and wild type Arabidopsis a-e: Transgenic Arabidopsis (a: root; b: leaf; c: stem; d: flower; e: fruit pod); f-j: Wild type Arabidopsis (f: leaf; g: flower; h: fruit pod; i: root; j: stem)."

Fig.4

GUS activity in transgenic Arabidopsis with PStCWIN1-GUS (a) Enzymatic assay of GUS activity, (b) Quantification of GUS activity, ***: P < 0.001."

Fig.5

The relative expression of GUS gene in transgenic PStCWIN1-GUS Arabidopsis under drought stress “**”indicates significant differences between treatments (P < 0.01)."

[1] Li J, Foster R, Ma S, et al. Identification of transcription factors controlling cell wall invertase gene expression for reproductive development via bioinformatic and transgenic analyses. The Plant Journal, 2021, 106(4):1058-1074.
doi: 10.1111/tpj.15218 pmid: 33650173
[2] Ruan Y L, Jin Y, Yang Y J, et al. Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Molecular Plant, 2010, 3(6):942-955.
doi: 10.1093/mp/ssq044
[3] Sherson S M, Alford H L, Forbes S M, et al. Roles of cell-wall invertases and monosaccharide transporters in the growth and development of Arabidopsis. Journal of Experimental Botany, 2003, 54(382):525-531.
doi: 10.1093/jxb/erg055 pmid: 12508063
[4] Goetz M, Guivarćh A, Hirsche J, et al. Metabolic control of tobacco pollination by sugars and invertases. Plant Physiology, 2017, 173(2):984-997.
doi: 10.1104/pp.16.01601 pmid: 27923989
[5] Zanor M I, Osorio S, Nunes-Nesi A, et al. RNA interference of LIN5 in tomato confirms its role in controlling Brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. Plant Physiology, 2009, 150(3):1204-1218.
doi: 10.1104/pp.109.136598 pmid: 19439574
[6] Wang E T, Wang J J, Zhu X D, et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nature Genetics, 2008, 40(11):1370-1374.
doi: 10.1038/ng.220 pmid: 18820698
[7] Li B, Liu H, Zhang Y, et al. Constitutive expression of cell wall invertase genes increases grain yield and starch content in maize. Plant Biotechnology Journal, 2013, 11(9):1080-1091.
doi: 10.1111/pbi.12102 pmid: 23926950
[8] Nishanth M J, Sheshadri S A, Rathore S S, et al. Expression analysis of cell wall invertase under abiotic stress conditions influencing specialized metabolism in Catharanthus roseus. Scientific Reports, 2018, 8(1):15059.
doi: 10.1038/s41598-018-33415-w pmid: 30305670
[9] Wang L M, Zheng Y X, Ding S H, et al. Molecular cloning, structure, phylogeny and expression analysis of the invertase gene family in sugarcane. BMC Plant Biology, 2017, 17(1):109.
doi: 10.1186/s12870-017-1052-0 pmid: 28645264
[10] Koonjul P K, Minhas J S, Nunes C, et al. Selective transcriptional down-regulation of anther invertases precedes the failure of pollen development in water-stressed wheat. Journal of Experimental Botany, 2005, 56(409):179-190.
doi: 10.1093/jxb/eri018 pmid: 15533880
[11] Sturm A, Chrispeels M J. cDNA cloning of carrot extracellular beta-fructosidase and its expression in response to wounding and bacterial infection. The Plant Cell, 1990, 2(11):1107-1119.
[12] Deryabin A N, Burakhanova E A, Trunova T I. Apoplastic sugars and cell-wall invertase are involved in formation of the tolerance of cold-resistant potato plants to hypothermia. Doklady Biochem Biophys, 2015, 465:366-369.
doi: 10.1134/S160767291506006X
[13] Tymowska-Lalanne Z, Kreis M. The plant invertases: physiology, biochemistry and molecular biology. Advances in Botanical Research, 1998, 28:71-117.
[14] 谢望, 李天静, 李鑫窈, 等. 胡杨PeNAC121基因启动子的分离鉴定和胁迫应答模式分析. 植物研究, 2022, 42(2):234-242.
doi: 10.7525/j.issn.1673-5102.2022.02.008
[15] 李杨, 曹高燚, 丁博, 等. 控制基因盐诱导且根系优势表达的小麦启动子Tasipro3克隆及功能分析. 植物遗传资源学报, 2020, 21(2):459-465.
doi: 10.13430/j.cnki.jpgr.20190523001
[16] Webster H, Keeble G, Dell B, et al. Genome-level identification of cell wall invertase genes in wheat for the study of drought tolerance. Functional Plant Biology, 2012, 39(7):569-579.
doi: 10.1071/FP12083 pmid: 32480809
[17] Wang Y Q, Wei X L, Xu H L, et al. Cell-wall invertases from rice are differentially expressed in caryopsis during the grain filling stage. Journal of Integrative Plant Biology, 2008, 50(4):466-474.
doi: 10.1111/jipb.2008.50.issue-4
[18] Juárez-Colunga S, López-González C, Morales-Elías N C, et al. Genome-wide analysis of the invertase gene family from maize. Plant Molecular Biology, 2018, 97(4):385-406.
doi: 10.1007/s11103-018-0746-5
[19] Proels R K, Roitsch T. Extracellular invertase LIN6 of tomato: a pivotal enzyme for integration of metabolic, hormonal, and stress signals is regulated by a diurnal rhythm. Journal of Experimental Botany, 2009, 60(6):1555-1567.
doi: 10.1093/jxb/erp027 pmid: 19297549
[20] Niu J Q, Wang A Q, Huang J L, et al. Isolation, characterization and promoter analysis of cell wall invertase gene SoCIN1 from sugarcane (Saccharum spp.). Sugar Tech, 2015, 17(1):65-76.
doi: 10.1007/s12355-014-0348-8
[21] 赵静, 蔡深文, 徐仲瑞, 等. 海州香薷(Elsholtzia haichowensis Sun)细胞壁转化酶基因启动子(EhcwINVP)的克隆及活性分析. 植物科学学报, 2016, 34(3):420-429.
[22] Lescot M, Déhais P, Thijs G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 2002, 30(1):325-327.
[23] 孔佑宾, 李喜焕, 张彩英. 大豆紫色酸性磷酸酶基因GmPAP4启动子结构与活性分析. 中国农业科学, 2017, 50(3):582-590.
doi: 10.3864/j.issn.0578-1752.2017.03.017
[24] 闫丽, 杨强, 邵宇鹏, 等. 大豆GmWRI1a基因启动子克隆及序列分析. 作物杂志, 2017(2):51-58.
[25] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4):402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[26] Li Z M, Palmer W M, Martin A P, et al. High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit. Journal of Experimental Botany, 2012, 63(3):1155-1166.
doi: 10.1093/jxb/err329 pmid: 22105847
[27] Oliver S N, Van Dongen J T, Alfred S C, et al. Cold-induced repression of the rice anther-specific cell wall invertase gene OSINV4 is correlated with sucrose accumulation and pollen sterility. Plant,Cell and Environment, 2005, 28(12):1534-1551.
doi: 10.1111/pce.2005.28.issue-12
[28] Ji X M, Shiran B, Wan J L, et al. Importance of pre-anthesis anther sink strength for maintenance of grain number during reproductive stage water stress in wheat. Plant,Cell and Environment, 2010, 33(6):926-942.
doi: 10.1111/pce.2010.33.issue-6
[29] Abbas A, Shah A N, Shah A A, et al. Genome-wide analysis of invertase gene family, and expression profiling under abiotic stress conditions in potato. Biology, 2022, 11(4):539.
doi: 10.3390/biology11040539
[30] Ou Y B, Song B T, Liu X, et al. Promoter regions of potato vacuolar invertase gene in response to sugars and hormones. Plant Physiology and Biochemistry, 2013, 69:9-16.
doi: 10.1016/j.plaphy.2013.04.015 pmid: 23688776
[31] 刘姣, 胡艳平, 周扬, 等. 木薯细胞壁酸性转化酶基因MeCWINV1启动子的克隆及其在烟草中的瞬时表达分析. 分子植物育种, 2014, 12(6):1169-1174.
[32] Hedley P E, Maddison A L, Davidson D, et al. Differential expression of invertase genes in internal and external phloem tissues of potato (Solanum tuberosum L.). Journal of Experimental Botany, 2000, 51(345):817-821.
pmid: 10938874
[33] Maddison A L, Hedley P E, Meyer R C, et al. Expression of tandem invertase genes associated with sexual and vegetative growth cycles in potato. Plant Molecular Biology, 1999, 41(6):741-752.
doi: 10.1023/a:1006389013179 pmid: 10737139
[34] Baldoni E, Genga A, Cominelli E. Plant MYB transcription factors: their role in drought response mchanisms. International Journal of Molecular Sciences, 2015, 16(7):15811-15851.
doi: 10.3390/ijms160715811 pmid: 26184177
[35] Freitas E O, Melo B P, Lourenço-Tessutti I T, et al. Identification and characterization of the GmRD26 soybean promoter in response to abiotic stresses: potential tool for biotechnological application. BMC Biotechnology, 2019, 19(1):79.
doi: 10.1186/s12896-019-0561-3 pmid: 31747926
[36] 李豆, 苏功博, 胡晓晴, 等. 白桦BpSPL6基因启动子的克隆及表达分析. 北京林业大学学报, 2022, 44(2):1-10.
[1] Zhang Jun, Cai Suyun, Xu Zihao, Hou Lei, He Runli, Yin Guifang, Wang Lihua, Wang Yanqing, Lu Wenjie, Sun Daowang. Cloning, Bioinformatics and Expression Analysis of FtERF Gene in Fagopyrum tataricum [J]. Crops, 2024, 40(2): 23-29.
[2] Zhang Qian, Ren Wen, Zhao Bingbing, Zhou Miaoyi, Li Hanshuai, Liu Ya, Du Hewei. Cloning and Bioinformatics Analysis of ZmMAPKKK21 Gene in Maize [J]. Crops, 2024, 40(2): 30-39.
[3] Wu Ying, Hu Die, Li Ting, Duan Qianyuan, Wei Ningning, Zhang Xinghua, Xu Shutu, Xue Jiquan. Analysis of WRKY Transcription Factor IIc Subfamily in Maize and Its Expression Profile under Drought [J]. Crops, 2024, 40(1): 80-89.
[4] Han Zhijun, Zhao Yanfei, Lu Yue, Li Shuang, Zhang Jiayue, Han Yuzhu, Zhang Jingying. Cloning and Analysis of the Structure and Function of the Key Enzyme Genes StGOGATs of Potato Nitrogen Assimilation [J]. Crops, 2023, 39(5): 71-80.
[5] Jiang Shan, Liu Jia, Cao Liang, Ren Chunyuan, Jin Xijun, Zhang Yuxian. Effects of Exogenous Melatonin on Growth and Yield of Adzuki Bean under Drought Stress at Seedling Stage [J]. Crops, 2023, 39(4): 202-209.
[6] Shan Jiaye, Zhang Xuewei, Yan Min, Yang Jian, Wang Fei, He Jixian, Hu Gang, Wang Yuchen, Jing Yanqiu, Lei Qiang. Effects of Spraying Rare Earth Micro-Fertilizer on Growth and Physiological Characteristics of Flue-Cured Tobacco under Drought Stress [J]. Crops, 2023, 39(2): 100-105.
[7] Zhang Lixia, Guo Xiaoyan, Shi Pengfei, Nie Liangpeng, Ling Jingwei, Shen Peilin, Ding Li, Zhang Lin, Lü Yuhu, Pan Ziliang. Effects of Drought Stress on Growth, Yield and Benefits of Kenaf in Vigorous Growing Period [J]. Crops, 2023, 39(1): 184-189.
[8] Meng Yaxuan, Yao Xuhang, Sun Yingqi, Zhao Xinyue, Wang Fengxia, Weng Qiaoyun, Liu Yinghui. Identification and Bioinformatics Analysis of DGAT Gene Family in Cereal Crops [J]. Crops, 2023, 39(1): 20-29.
[9] Yin Xilong, Shi Yang, Li Wangsheng, Xing Wang. Photosynthetic Physiological Response to Drought Stress in Sugar Beet at Seedling Stage [J]. Crops, 2022, 38(6): 152-158.
[10] Zhang Ruidong, Liang Xiaohong, Liu Jing, Nan Huailin, Wang Songyu, Cao Xiong. Effects of Seed Priming on Germination and Physiological Characteristics of Sorghum Seeds under Drought Stress [J]. Crops, 2022, 38(6): 234-240.
[11] Li Wangsheng, Wang Xueqian, Yin Xilong, Shi Yang, Liu Dali, Tan Wenbo, Xing Wang. Comprehensive Evaluation of Drought Tolerance of Sugar Beet Germplasms at Seedling Stage [J]. Crops, 2022, 38(6): 54-60.
[12] Pang Xingyue, Wan Lin, Li Su, Wang Yuhang, Liu Chen, Xiao Xiaolu, Li Xinhao, Ma Ni. Effects of Exogenous SLs and Nano-K2MoO4 on Seed Germination of Brassica napus L. under Drought Stress [J]. Crops, 2022, 38(4): 214-220.
[13] Wei Xiaokai, Jing Yanqiu, He Jixian, Gu Huizhan, Lei Qiang, Yu Shikang, Zhang Qili, Li Junju. Alleviating Effect of Exogenous Spermidine on Flue-Cured Tobacco Seedlings under Drought Stress [J]. Crops, 2022, 38(3): 143-148.
[14] Tan Qinliang, Cheng Qin, Pan Chenglie, Zhu Pengjin, Li Jiahui, Song Qiqi, Nong Zemei, Zhou Quanguang, Pang Xinhua, Lü Ping. Effects of Drought Stress on Physiological Indexes of New Sugarcane Variety Guire 2 [J]. Crops, 2022, 38(3): 161-167.
[15] Yang Aojun, Chang Qiaoling, Wang Peng, Wang Fang, Gao Yanting, Zhou Guangkuo, Song Xiaojia, Wei Encheng. Effects of Exogenous 5-Aminolevulinic Acid on Seed Germination and Seedling Growth of Maize under Drought Stress [J]. Crops, 2022, 38(3): 194-199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!