Crops ›› 2024, Vol. 40 ›› Issue (4): 113-120.doi: 10.16035/j.issn.1001-7283.2024.04.014

Previous Articles     Next Articles

Effects of Different Base Application Amounts of Calcium- Magnesium Hydrotalcite in Early Rice on Yield and Rice Quality of Double-Cropping Rice in Southern Hunan

Yuan Shuai1(), He Mingjuan1(), Cui Can1, Han Yu1, Yu Peng2, Yi Zhenxie1()   

  1. 1College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China
    2College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, Hunan, China
  • Received:2023-07-13 Revised:2023-09-04 Online:2024-08-15 Published:2024-08-14

Abstract:

In order to study the effect of calcium-magnesium hydrotalcite on the yield and quality of double- cropping rice, and explore the optimal application rate of calcium-magnesium hydrotalcite in the double- cropping rice area in southern Hunan, using early rice cultivars “Luliangyou 996” (high Cd accumulation cultivar) and “Zhuliangyou 819” (low Cd accumulation cultivar), late rice cultivars “Yuzhenxiang” (high Cd accumulation cultivar) and “Xiangwanxian 13” (low Cd accumulation cultivar) as materials, a field experiment was carried out in Hengyang county, Hunan province. Comparative study of rice yield, yield formation characteristics and rice quality under different dosages of calcium-magnesium hydrotalcite (0, T1; early rice base application 1500 kg/ha, T2; early rice base application 2250 kg/ha, T3; early rice base application 3000 kg/ha, T4). The results showed that, different dosages of calcium-magnesium hydrotalcite could increase rice tiller number, significantly increased rice leaf area index, relative chlorophyll content (SPAD value) and dry matter accumulation, among which the effects of T3 and T4 treatments were better. Calcium-magnesium hydrotalcite significantly increased the yield of rice, and the yields of all varieties were higher under T3 and T4 treatments. Calcium-magnesium hydrotalcite had no significant effect on rice processing, appearance and cooking quality, but it could significantly reduce the cadmium content of brown rice, and the T4 and T3 treatments had a higher reduction rate. Considering the significant difference in rice yield and rice quality among different application rates and the economy, it was more appropriate to apply calcium-magnesium hydrotalcite 2250 kg/ha in the double-cropping rice fields in southern Hunan.

Key words: Rice, Calcium-magnesium hydrotalcite, Southern Hunan, Yield, Rice quality

Table 1

Effects of calcium-magnesium hydrotalcite application rate on rice yield and its components"

季别
Season
品种
Variety
处理
Treatment
有效穗数
Effective number of
panicles (×104/hm2)
穗粒数
Grains per
panicle
结实率
Seed-setting
rate (%)
千粒重
1000-grain
weight (g)
理论产量
Theoretical
yield (t/hm2)
实际产量
Actual yield
(t/hm2)
早稻Early rice 陆两优996 T1 220.14c 135.14a 73.14c 28.33a 6.18c 5.47b
T2 221.15c 135.20a 73.45c 28.24a 6.22c 5.54b
T3 231.04b 128.56b 80.21b 28.28a 6.83b 6.24a
T4 237.15a 126.58b 83.54a 28.22a 7.17a 6.56a
株两优819 T1 225.10d 150.12a 78.26c 25.96b 6.93c 6.61c
T2 240.02c 142.36b 81.40b 26.02b 7.26b 6.90b
T3 248.00b 141.12b 84.51a 25.53a 7.59a 7.26a
T4 259.12a 137.14c 84.32a 25.41a 7.66a 7.31a
晚稻Late rice 玉针香 T1 248.36c 127.15a 78.86b 28.76a 7.18c 7.06c
T2 268.58b 119.85b 82.63ab 28.64a 7.66b 7.46b
T3 270.15b 119.61bc 82.32ab 28.62a 7.69b 7.63b
T4 296.21a 115.75c 84.21a 28.51a 8.40a 8.19a
湘晚籼13号 T1 219.45c 155.26a 77.44a 27.85a 7.42c 7.25c
T2 231.65b 150.32b 81.25b 27.62a 7.89b 7.75b
T3 256.45a 147.12bc 81.49b 27.75a 8.71a 8.48a
T4 258.92a 145.14c 83.57b 27.59a 8.85a 8.62a

Fig.1

Tiller dynamics of early rice varieties PT: Peak tillering stage, BT: Booting stage, FH: Full heading stage, MF: Mid-filling stage. The same below."

Fig.2

Tiller dynamics of late rice varieties"

Table 2

Effects of calcium-magnesium hydrotalcite rate on LAI of rice"

季别
Season
品种
Variety
处理
Treatment
分蘖盛期
Peak tillering stage
孕穗期
Booting stage
齐穗期
Full heading stage
灌浆中期
Mid-filling stage
早稻
Early rice
陆两优996 T1 2.75b 3.41b 3.35b 3.25b
T2 2.84b 3.55b 3.41b 3.31b
T3 2.95ab 4.15a 3.94a 3.61a
T4 3.20a 4.31a 4.07a 3.81a
株两优819 T1 2.36b 3.61b 3.32c 2.69c
T2 2.48b 3.76b 3.54b 2.91b
T3 2.80a 3.97a 3.73a 3.37a
T4 2.84a 4.11a 3.82a 3.42a
晚稻
Late rice
玉针香 T1 4.15b 4.93c 4.65b 4.19c
T2 4.41ab 5.71b 5.32a 4.75b
T3 4.45ab 5.71b 5.34a 4.81ab
T4 4.77a 6.25a 5.73a 5.26a
湘晚籼13号 T1 4.84b 6.71c 5.47c 5.24b
T2 5.08ab 7.46b 5.98b 5.65b
T3 5.35a 7.91a 6.65a 6.24a
T4 5.43a 7.87a 6.69a 6.31a

Table 3

Effects of calcium-magnesium hydrotalcite application rate on SPAD value of rice leaves"

季别Season 品种Variety 处理Treatment 分蘖盛期Peak tillering stage 孕穗期Booting stage 齐穗期Full heading stage 灌浆中期Mid-filling stage
早稻
Early rice
陆两优996 T1 31.97c 38.45b 39.20b 37.22b
T2 32.04c 38.46b 40.22ab 39.11b
T3 34.91b 41.35a 41.60a 40.52a
T4 36.21a 41.37a 42.53a 41.30a
株两优819 T1 35.55c 38.37c 39.11c 38.20b
T2 37.86b 40.83b 42.22b 40.62b
T3 40.22a 42.73a 44.36a 42.20a
T4 40.31a 42.83a 44.43a 42.45a
晚稻
Late rice
玉针香 T1 33.53c 35.75b 37.11b 34.23b
T2 35.30b 36.81b 37.82b 35.12b
T3 37.79a 38.90a 38.73a 37.24a
T4 38.40a 39.32a 39.35a 38.20a
湘晚籼13号 T1 31.17b 35.12a 35.54c 32.01c
T2 31.33b 35.50a 36.95b 34.77b
T3 32.67a 36.12a 38.69a 36.82a
T4 33.50a 36.51a 38.75a 36.84a

Table 4

Effects of calcium-magnesium hydrotalcite rate on dry matter accumulation of rice t/hm2"

季别
Season
品种
Variety
处理
Treatment
分蘖盛期
Peak tillering stage
孕穗期
Booting stage
齐穗期
Full heading stage
灌浆中期
Mid-filling stage
成熟期
Maturity stage
早稻
Early rice
陆两优996 T1 1.76b 3.77b 6.15b 10.55b 10.95b
T2 2.00a 3.85b 6.21b 10.61b 11.00b
T3 2.03a 4.40a 6.83a 11.86a 12.46a
T4 2.26a 4.64a 7.15a 12.57a 13.14a
株两优819 T1 2.02b 3.87b 7.46b 9.28b 13.24c
T2 2.12b 4.04b 7.84b 9.46b 13.81b
T3 2.52a 5.21a 8.12a 10.18a 14.51a
T4 2.43a 5.30a 8.18a 10.51a 14.58a
晚稻
Late rice
玉针香 T1 3.48b 7.27b 9.74b 11.73b 14.12c
T2 3.71ab 7.56a 10.19a 12.79a 14.78b
T3 3.96a 7.61a 10.22a 12.85a 15.86a
T4 4.08a 7.87a 10.43a 13.16a 16.37a
湘晚籼13号 T1 4.19b 8.99c 10.82c 12.57b 14.52c
T2 4.45b 9.12b 12.16b 13.05b 15.54b
T3 4.77a 9.61a 12.83a 14.39a 16.96a
T4 4.79a 9.67a 12.94a 14.51a 17.02a

Table 5

Effects of calcium-magnesium hydrotalcite application rate on processing and cooking quality of rice"

季别
Season
品种
Variety
处理
Treatment
出糙率
Brown rice rate (%)
精米率
Milled rice rate (%)
整精米率
Head rice rate (%)
直链淀粉含量
Amylose content (%)
胶稠度
Gel consistency (mm)
早稻
Early rice
陆两优996 T1 72.67b 64.31a 44.08a 24.36a 54.50a
T2 75.02a 66.00a 44.27a 24.30a 54.40a
T3 75.04a 65.33a 44.83a 24.28a 55.51a
T4 74.67a 66.02a 45.57a 24.26a 55.23a
株两优819 T1 72.33b 65.67a 58.02a 22.71a 53.15a
T2 74.15a 64.05a 58.26a 22.58a 53.61a
T3 74.06a 66.33a 58.18a 25.31a 53.15a
T4 74.67a 65.00a 59.45a 25.34a 54.04a
晚稻
Late rice
玉针香 T1 77.67a 64.67a 54.46a 17.45a 72.20a
T2 77.71a 64.72a 55.14a 17.49a 74.10a
T3 78.01a 65.67a 55.36a 18.30a 75.30a
T4 78.67a 65.33a 55.35a 18.51a 75.70a
湘晚籼13号 T1 77.92a 66.93a 68.03a 15.65a 53.02a
T2 77.95a 65.28a 72.27a 15.47a 54.15a
T3 76.34a 64.24a 69.88a 15.55a 54.40a
T4 78.21a 65.58a 70.64a 15.34a 53.31a

Table 6

Effects of calcium-magnesium hydrotalcite application rate on appearance and Cd content of rice"

季别
Season
品种
Variety
处理
Treatment
垩白粒率
Chalky grain
rate (%)
垩白度
Chalkiness
(%)
粒长
Grain length
(mm)
粒宽
Grain width
(mm)
长宽比
Length-width
ratio
糙米镉含量
Cadmium content
in brown rice (mg/kg)
早稻
Early rice
陆两优996 T1 36.32a 4.98a 6.23b 2.33a 2.67a 0.14a
T2 36.28a 4.95a 6.24b 2.34a 2.67a 0.10b
T3 35.90a 4.97a 6.32a 2.36a 2.67a 0.06c
T4 35.74a 473a 6.36a 2.32a 2.74a 0.06c
株两优819 T1 16.12a 3.06a 5.97a 2.19a 2.77a 0.11a
T2 15.51a 3.02a 5.29a 2.19a 2.44a 0.09b
T3 15.45a 2.94a 6.01a 2.20a 2.76a 0.07c
T4 15.25a 2.92a 5.56a 2.21a 2.57a 0.07c
晚稻
Late rice
玉针香 T1 7.68a 3.42a 5.14a 1.84a 2.86a 0.12a
T2 7.42a 2.77a 5.23a 1.86a 2.87a 0.08b
T3 7.26a 2.51a 5.24a 1.89a 2.82a 0.07bc
T4 6.37a 2.02a 5.27a 1.87a 2.87a 0.05c
湘晚籼13号 T1 10.63a 3.06a 6.61b 2.02a 3.32a 0.11a
T2 10.09a 2.93a 6.64b 2.01a 3.34a 0.07b
T3 9.46a 2.63a 6.74b 2.01a 3.39a 0.05c
T4 9.69a 2.61a 6.70a 2.05a 3.32a 0.03c
[1] 李丹, 王京文, 袁杭杰, 等. 餐厨废弃物土壤调理剂对土壤理化性状及水稻产量的影响. 农学学报, 2023, 13(6):39-42.
doi: 10.11923/j.issn.2095-4050.cjas2022-0080
[2] 刘静, 王萍, 代良羽, 等. 喀斯特山区高镉稻田治理措施对稻米降镉的效果. 江苏农业科学, 2023, 51(5):227-232.
[3] 袁帅, 苏雨婷, 陈平平, 等. 氮肥运筹对湘南双季杂交稻生长发育与稻米品质的影响. 作物杂志, 2023(2):91-99.
[4] 刘梦丽, 叶长林, 田瑞云, 等. 不同钝化材料对弱酸性稻田稻米吸收镉的影响. 安徽农业大学学报, 2023, 50(3):497-501.
[5] 娄飞, 付天岭, 代良羽, 等. 不同土壤调理剂对黔中地区水稻Cd积累转运和产量的影响. 浙江农业学报, 2022, 34(7):1493-1501.
doi: 10.3969/j.issn.1004-1524.2022.07.17
[6] 陈盈, 张满利, 刘宪平, 等. 生物炭对水稻齐穗期叶绿素荧光参数及产量构成的影响. 作物杂志, 2016(3):94-98.
[7] 张剑锋, 廖凯强, 曾红远, 等. 不同土壤调理剂对水稻生长及镉积累的影响. 湖南农业科学, 2018(12):45-49.
[8] 李姝航. 不同材质生物炭对水稻产量和品质的影响. 沈阳: 沈阳农业大学, 2017.
[9] 舒志芬, 刘晨, 张海清. 株两优819杂交制种的适宜收获期研究. 作物研究, 2012, 26(6):631-634.
[10] 危伙荣. 超级杂交早稻陆两优996试种示范总结. 福建农业, 2014(8):109.
[11] 杨柳. 优质稻湘晚籼13号高产栽培技术. 农业科技通讯, 2017(10):199-201.
[12] 袁方强, 刘辉, 陈光玉, 等. 穴播谷粒数对余庆县常规优质稻玉针香产量的影响. 农技服务, 2021, 38(2):23-24.
[13] 国家质量监督检验检疫总局. 优质稻谷:GB/T 17891-2017. 北京: 中国标准出版社, 2017.
[14] 康民泰, 文孝荣, 唐福森, 等. 不同盐碱地土壤调理剂对水稻生育期、农艺性状、产量和品质的影响. 北方水稻, 2022, 52 (6):21-23.
[15] 成志军, 肖庆驹, 代玉豪, 等. 土壤调理剂对农田镉污染的治理修复研究进展. 植物医学, 2022, 1(6):12-19.
[16] 朱芸, 郭彬, 林义成, 等. 新型矿基土壤调理剂对滨海盐土理化性状和水稻产量的影响. 浙江农业学报, 2021, 33(5):885-892.
doi: 10.3969/j.issn.1004-1524.2021.05.14
[17] 李夏雯. 土壤调理剂配施与水分优化管理结合对旱直播稻产量、品质及土壤性状影响研究. 天津: 天津农学院, 2022.
[18] 宋福如, 宋利强, 曹子库, 等. 有机硅产品治理盐碱土壤研究初报. 中国土壤与肥料, 2021(3):272-282.
[19] 廖雄辉, 周晓溦, 蔡丹, 等. 南荻炭基土壤调理剂施用对水稻光合特性及产量的影响. 中国农业科技导报, 2019, 21(8):132-139.
doi: 10.13304/j.nykjdb.2019.0040
[20] 胡仁健. 有机硅土壤调理剂对水稻安全生产影响的研究. 安徽农学通报, 2020, 26(6):113-114.
[21] 余喜初, 李大明, 黄庆海, 等. 过氧化钙及硅钙肥改良潜育化稻田土壤的效果研究. 植物营养与肥料学报, 2015, 21(1):138-146.
[22] 林小兵, 武琳, 王惠明, 等. 不同用量土壤调理剂对镉污染农田土壤环境的影响. 长江流域资源与环境, 2021, 30(7):1734-1745.
[23] 温权州, 冉露, 周富忠, 等. 土壤调理剂对降低土壤酸性和水稻镉含量的影响. 湖北大学学报(自然科学版), 2022, 44(2):184-189.
[24] 贾倩, 胡敏, 张洋洋, 等. 硅钙肥对水稻吸收铅、镉的影响研究. 环境科学与技术, 2017, 40(6):24-30.
[25] 赵紫薇, 欧张丹, 田茂平, 等. 湖南怀化花洋溪村“贡田”稻米品质的影响因素分析. 植物营养与肥料学报, 2023, 29(2):334-344.
[26] 周翌城, 郭哈伦, 陆尧, 等. 胚乳蛋白质对稻米品质影响的研究进展. 中国稻米, 2023, 29(1):27-34,43.
doi: 10.3969/j.issn.1006-8082.2023.01.005
[27] 江棋. 土壤调理剂对镉污染稻田土壤质量和稻米品质的影响. 武汉: 华中农业大学, 2020.
[28] Yuan S, Cui C, Han Y, et al. Silicon calcium fertilizer application and foliar spraying with silicon fertilizer decreases cadmium uptake and translocation in rice grown in polluted soil. Agronomy- Basel, 2023, 13(4):101-105.
[1] Ou Yingzhuo, Zhao Qing, Gu Huaiying, Zhou Yuyang, Liu Changhua, Meng Lijun. Application Status of Chlorate in Nitrate Nitrogen Research of Rice [J]. Crops, 2024, 40(4): 1-7.
[2] Wang Wenxia, Chang Bokai, Xia Qing, Zhi Hui, Du Jie. Effects of Foliar Spraying Selenium on Physiological Characteristics, Yield and Quality of Flax [J]. Crops, 2024, 40(4): 130-137.
[3] Du Jie, Feng Yu, Xia Qing, Zhi Hui, Wang Wenxia. Mechanism of Exogenous Brassinolide in Alleviating Drought Stress Injury at Panicle Differentiation Stage in Foxtail Millet [J]. Crops, 2024, 40(4): 144-151.
[4] Cao Li, Yang Jianhui, Zhang Li, Ren Wei, Cao Zhengpeng, Ma Fang, Guan Yong. Effects of Different Concentrations of Nano-Selenium Fertilizer on Yield, Quality and Selenium Content of Broccoli [J]. Crops, 2024, 40(4): 152-157.
[5] Zhang Lijuan, Qin Yukun, Chen Junying. Effects of Nitrogen Application Rate on Cotton Yield Formation and Nitrogen Utilization Efficiency under Rape-Cotton Double Cropping Straw Returning Condition [J]. Crops, 2024, 40(4): 158-163.
[6] Ren Liang, Fang Mengying, Wu Zhihai, Dong Xuerui, Lu Lin, Yan Peng, Dong Zhiqiang. Effects of Ethylene-Chlormequat-Potassium (ECK) on Sorghum [Sorghum bicolor (L.) Moench.] Lodging Resistance and Yield [J]. Crops, 2024, 40(4): 164-171.
[7] Zhou Zhou, Shen Xinya, Wang Jun, Liu Lijun. Effects of Combination of Controlled-Release Fertilizer and Common Urea on Yield, Nitrogen Use Efficiency and Grain Quality in Rice [J]. Crops, 2024, 40(4): 180-187.
[8] Li Hu, Wu Zishuai, Liu Guanglin, Luo Qunchang, Chen Chuanhua, Zhu Qinan. Effects of Different Cultivation Conditions on Cadmium Content of Grains and Main Characteristics in Rice [J]. Crops, 2024, 40(4): 203-208.
[9] Lü Bo, Ding Liang, Guo Cong, Chen Feng, Zhou Haiping, Wang Xuesong, Dong Xiaolin, Xiang Fayun. Effects of Compound Microbial Fertilizer on Soil Nutrients and Rhizosphere Bacterial Community in Cotton Field [J]. Crops, 2024, 40(4): 209-215.
[10] Li Chunhua, Wu Han, Jiayangduola , Wang Chunlong, Wang Yanqing, Ren Changzhong. Effects of Sowing Date on Agronomic Traits and Yield of Common Buckwheat Varieties (Lines) [J]. Crops, 2024, 40(4): 216-222.
[11] Wang Ruopeng, Lü Wei, Liu Wenping, Wen Fei, Han Junmei, Liu Xiaxia. Effects of Different Cultivation Modes on Yield of Sesame and Water and Heat of Soil [J]. Crops, 2024, 40(4): 247-252.
[12] Gu Huaiying, Hu Shiqin, Zhao Qing, Liu Changhua, Meng Lijun. The Progress on Enhancing Salt Tolerance of Rice by Rhizosphere Microorganisms [J]. Crops, 2024, 40(4): 8-13.
[13] Chen Luo, Zhu Wen, Li Wenhui, Zhao Junliang, Zhou Lingyan, Yang Wu. Advances in Research and Application of Rice Bacterial Blight Resistance Genes [J]. Crops, 2024, 40(3): 1-7.
[14] Jiang Min, He Aibin, Sun Huijuan, Man Jianguo, Nie Lixiao. Effects of Nitrogen Management on Growth and Development, Soil Physical and Chemical Properties of Late-Season Rice under Different Straw Retention Treatments of Early-Season Rice in Direct Seeding Mode of Double-Season Rice [J]. Crops, 2024, 40(3): 100-108.
[15] Guo Haibin, Zhang Jungang, Wang Wenwen, Xue Zhiwei, Xu Haitao, Feng Xiaoxi, Wang Bingong, Wang Chengye. Response of Photosynthetic Characteristics, Root Growth and Yield of Summer Maize to Subsoiling and Increasing Density in Lime Concretion Black Soil [J]. Crops, 2024, 40(3): 109-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!