Crops ›› 2024, Vol. 40 ›› Issue (4): 1-7.doi: 10.16035/j.issn.1001-7283.2024.04.001

    Next Articles

Application Status of Chlorate in Nitrate Nitrogen Research of Rice

Ou Yingzhuo1,2(), Zhao Qing1,2, Gu Huaiying1, Zhou Yuyang1, Liu Changhua1(), Meng Lijun2()   

  1. 1College of Advanced Agriculture and Ecological Environment, Heilongjiang University,Harbin 150080, Heilongjiang, China
    2Shenzhen Agricultural Genomics Institute,Chinese Academy of Agricultural Sciences, Shenzhen 518120, Guangdong, China
  • Received:2023-05-22 Revised:2023-07-20 Online:2024-08-15 Published:2024-08-14

Abstract:

Chlorate treatment is one of successful ways to screen rice varieties with nitrogen efficiency and high tolerance to low nitrogen. The nitrogen use efficiency (NUE) of rice can be effectively determined by the study of the strength of sensitivity to chlorate. This review summaries the progress of the application of chlorate in nitrate nitrogen utilization research in rice including the appraisal principle for chlorate, identification techniques and evaluation indices of rice chlorate sensitivity, screening of rice germplasms with low nitrogen efficiency and high nitrogen tolerance based on chlorate, and the use of chlorate in the investigation of nitrogen-related genes. Moreover, we analyze the existing problems such as shortage and limitation of chlorate in nitrogen research, which in order to provide the basis for its application in breeding for high NUE rice cultivars and exploring nitrogen regulation mechanism.

Key words: Rice, Nitrate nitrogen, Chlorate, Nitrogen use efficiency

Table 1

The screening and evaluation of chlorate sensitivity in rice"

时期
Period
处理浓度
Treatment concentration
材料
Material
评价结果
Evaluation
参考文献Reference
芽期
Bud stage
0.2%
包含88个株系的珍汕97和日本晴所构建的回交群体(BC4F2 获得15份抗性优于珍汕97和26份较珍汕97显著敏感的导入系 [36]
0.1%
ZYQ8、JX17、日本晴、9311的127个株系的DH群体(ZYQ8/JX17) 敏感:ZYQ8
抗性:JX17
[40]
0.1%
9311、Milyang352的117个株系DH群体(9311/Milyang352) 敏感:9311
抗性:Milyang352
[38]
苗期
Seedling stage
2 mmol/L
水稻“9311”突变体库M2代2361份材料 获得40个与野生型存在敏感差异的突变体株系 [42]
1.5%
粳13、粳157、粳M1148、中花11;籼147、籼144、籼180、9311 敏感性:中花11<粳13<粳M1148<籼144<9311<籼147<籼180<粳157 [28]
0.05%
Saeilmi、Milyang23、9311、日本晴的4个渐渗系 敏感:Milyang23、9311
抗性:Saeilmi
[25]

437个辐射突变体株系
获得4个氯酸钾抗性突变体株系(M819、M821、M1004和M1009) [55]
[1] Liu X W, Wang H Y, Zhou J M, et al. Effect of N fertilization pattern on rice yield, N use efficiency and fertilizer-N fate in the Yangtze River Basin, China. PLoS ONE, 2016, 11(11):e0166002.
[2] Andrews M, Raven J A, Lea P J. Do plants need nitrate? The mechanisms by which nitrogen form affects plants. Annals of Applied Biology, 2013, 163(2):174-199.
[3] 邢百莲. 小麦高产与氮高效基因挖掘及优异种质资源鉴定. 泰安: 山东农业大学, 2021.
[4] 陈颖, 周振翔, 周天阳, 等. 水稻氮高效吸收利用机制及栽培调控措施. 作物杂志, 2016(6):26-32.
[5] 赵灿, 刘光明, 戴其根, 等. 氮肥对水稻产量、品质和氮利用效率的影响研究进展. 中国稻米, 2022, 28(1):48-52,57.
doi: 10.3969/j.issn.1006-8082.2022.01.010
[6] Yu J, Xuan W, Tian Y L, et al. Enhanced OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice. Plant Biotechnology Journal, 2021, 19(1):167-176.
[7] 董桂春, 陈琛, 袁秋梅, 等. 氮肥处理对氮素高效吸收水稻根系性状及氮肥利用率的影响. 生态学报, 2016, 36(3):642-651.
[8] 钟思荣, 龚丝雨, 张世川, 等. 作物不同基因型耐低氮性和氮效率研究进展. 核农学报, 2018, 32(8):1656-1663.
doi: 10.11869/j.issn.100-8551.2018.08.1656
[9] Han M, Okamoto M, Beatty P H, et al. The genetics of nitrogen use efficiency in crop plants. Annual Review of Genetics, 2015,49:269-289.
[10] 朴钟泽, 韩龙植, 高熙宗, 等. 水稻氮素利用效率的选择效果. 作物学报, 2004, 30(7):651-656.
[11] 魏杰, 朱新杰, 王后苗, 等. 氯酸盐处理对不同基因型玉米苗期性状的影响. 南京农业大学学报, 2020, 43(3):423-430.
[12] 贾佩陇, 李彪, 黎明辉, 等. 基于水稻染色体片段代换系的苗期耐低氮QTL分析. 华南农业大学学报, 2019, 40(4):16-24.
[13] Lian X M, Xing Y Z, Yan H, et al. QTLs for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid. Theoretical and Applied Genetics, 2005, 112(1):85-96.
pmid: 16189659
[14] Subudhi P K, Garcia R S, Coronejo S, et al. Comparative transcriptomics of rice genotypes with contrasting responses to nitrogen stress reveals genes influencing nitrogen uptake through the regulation of root architecture. International Journal of Molecular Sciences, 2020, 21(16):5759.
[15] Zhang Z H, Chu C C. Nitrogen-use divergence between Indica and Japonica rice: variation at nitrate assimilation. Molecular Plant, 2020, 13(1):6-7.
[16] Gao Z Y, Wang Y F, Chen G, et al. The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency. Nature Communications, 2019, 10:5027.
[17] Goel P, Singh A K. Abiotic stresses downregulate key genes involved in nitrogen uptake and assimilation in Brassica juncea L. PLoS ONE, 2015, 10(11):e0143645.
[18] 文春阳. 耐低氮水稻筛选及筛选指标研究. 重庆: 重庆大学, 2009.
[19] Meszaros A, Pauk J. Chlorate resistance as a tool to study the effect of nitrate reductase antisense gene in wheat. Cereal Research Communications, 2002, 30(3/4):245-252.
[20] Balch W M. Studies of nitrate transport by marine phytoplankton using 36Cl-ClO3- as a transport analogue—II. Field observations. Journal of Physiology, 1987, 23(2):107-118.
[21] Guerrero M G, Vega J M, Losada M. The assimilatory nitrate-reducing system and its regulation. Annual Review of Plant Physiology, 1981, 32(1):169-204.
[22] Crawford N M. Study of chlorate-resistant mutants of Arabidopsis: insights into nitrate assimilation and ion metabolism of plants. Genetic Engineering, 1992,14:89-98
[23] Borges R, Miguel E C, Dias J M R, et al. Ultrastructural, physiological and biochemical analyses of chlorate toxicity on rice seedlings. Plant Science, 2004, 166(4):1057-1062.
[24] 黎华寿, 张修玉, 曾祥有, 等. 氯酸钾对花生生长的毒害效应. 植物生态学报, 2006, 30(1):124-131.
doi: 10.17521/cjpe.2006.0018
[25] Kabange N R, Park S Y, Lee J Y, et al. New insights into the transcriptional regulation of genes involved in the nitrogen use efficiency under potassium chlorate in rice (Oryza sativa L.). International Journal of Molecular Sciences, 2021, 22(4):21.
[26] 张志纯, 郑永坤, 买思婕. 光照与氮的交互作用对谷皮菱形藻生长及硝酸还原酶活性的影响. 安徽农业科学, 2021, 49(23):102-105.
[27] 宋月, 崔婷婷, 武丽娟, 等. 玉米叶片硝酸还原酶活性测定方法的优化. 湖北农业科学, 2017, 56(15):2817-2820,2907.
[28] 张瑛, 李浩, 张雨萱, 等. 水稻氯酸钾抗性与硝酸还原酶NR、亚硝酸还原酶NIR的关联性研究. 中国农学通报, 2019, 35(14):1-7.
doi: 10.11924/j.issn.1000-6850.casb18060030
[29] Stauber J L. Toxicity of chlorate to marine microalgae. Aquatic Toxicoloogy, 1998, 41(3):213-227.
[30] 欧阳若, 刘和平, 李平, 等. 氯酸钾引起‘石硖’龙眼的逆境生理反应. 江西农业大学学报, 2005, 27(1):34-38.
[31] Lam H M, Coschigano K T, Oliveira I C, et al. The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 1996, 47:569-593.
[32] Han M L, Lv Q Y, Zhang J, et al. Decreasing nitrogen assimilation under drought stress by suppressing DST-mediated activation of Nitrate Reductase 1.2 in rice. Molecular Plant, 2022, 15(1):167-178.
[33] Reed H E, Sammons D J, Smail V W, et al. Sensitivity of soft red winter wheat cultivars to chlorate-induced toxicity. Journal of Plant Nutrition, 1992, 15(12):2621-2637.
[34] Karunarathne S D, Han Y, Zhang X Q, et al. Using chlorate as an analogue to nitrate to identify candidate genes for nitrogen use efficiency in barley. Molecular Breeding, 2021, 41(8):13.
[35] 杨海龙, 杨佳恒, 蔡金洋. 不同施氮水平下水稻叶片SPAD变化趋势及其与产量的关系. 浙江农业科学, 2020, 61(11):2200-2204.
doi: 10.16178/j.issn.0528-9017.20201102
[36] 周红菊, 穆俊祥, 王弈, 等. 利用水稻回交群体定位氯酸钾抗性基因. 分子植物育种, 2005, 3(5):721-724.
[37] Reflinur, Kim B, Lestari P, et al. Identification of QTLs associated with indica-japonica differentiation-related traits in rice (Oryza sativa L.). Plant Breeding and Biotechnology, 2018, 6(3):193-205.
[38] Kabange N R, Park S, Shin D, et al. Identification of a novel QTL for chlorate resistance in rice (Oryza sativa L.). Agriculture, 2020, 10(8):360.
[39] Sun P, Liu F X, Tan L B, et al. Quantitative trait loci (QTLs) for potassium chlorate resistance and low temperature tolerance in seedling stage in rice (Oryza sativa L.). Indian Journal of Genetics and Plant Breeding, 2012, 72(4):405-414.
[40] Teng S, Tian C G, Chen M S, et al. QTLs and candidate genes for chlorate resistance in rice (Oryzasativa L.). Euphytica, 2006, 152(2):141-148.
[41] Hu B, Wang W, Ou S J, et al. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nature Genetics, 2015, 47(7):834.
doi: 10.1038/ng.3337
[42] 刘石锋, 陈倩, 洪广成, 等. 水稻“9311”突变体库的氯酸盐毒性筛选与分析. 重庆师范大学学报:自然科学版, 2019, 36(2):109-113,145.
[43] Alfatih A, Wu J, Zhang Z S, et al. Rice NIN-LIKE PROTEIN 1 rapidly responds to nitrogen deficiency and improves yield and nitrogen use efficiency. Journal of Experimental Botany, 2020, 71(19):6032-6042.
doi: 10.1093/jxb/eraa292 pmid: 32585013
[44] Zhang Z S, Xia J Q, Alfatih A, et al. Rice NIN-LIKE PROTEIN 3 modulates nitrogen use efficiency and grain yield under nitrate- sufficient conditions. Plant Cell and Environment, 2022, 45(5):1520-1536.
[45] Wu J, Zhang Z S, Xia J Q, et al. Rice NIN-LIKE PROTEIN 4 plays a pivotal role in nitrogen use efficiency. Plant Biotechnology Journal, 2021, 19(3):448-461.
[46] Karunarathne S D, Han Y, Zhang X Q, et al. Using chlorate as an analogue to nitrate to identify candidate genes for nitrogen use efficiency in barley. Molecular Breeding, 2021, 41(8):47.
[47] Nishimura A, Ashikari M, Lin S, et al. Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(33):11940-11944.
[48] Zhao C M, Hasegawa H, Ichii M. A chlorate resistant mutant of rice (Oryza sativa L.) with normal nitrate uptake and nitrate reductase activity. Breeding Science, 2000, 50(1):9-15.
[49] MacKown C T, VanSanford D A, Rothwell C G. Nitrate uptake and assimilation and chlorate tolerance of wheat. Crop Science, 1996, 36(2):313-318.
[50] Datta S K d, Broadbent F E. Nitrogen-use efficiency of 24 rice genotypes on an N-deficient soil. Field Crops Research, 1990, 23(2):81-92.
[51] Chao D Y, Lin H X. Transport solution in rice variations. Nature Plants, 2015, 1(7):2.
[52] Sano R, Morishima H. Indica-Japonica differentiation of rice cultivars viewed from variations in key characters and isozymes, with special reference to landraces from the Himalayan hilly areas. Theoretical and Applied Genetics, 1992, 84(3):266-274.
[53] 刘少洋, 韩容, 李志新. 水稻突变体的创制、鉴定及应用. 湖北农业科学, 2022, 61(23):5-10,14.
[54] 符德保, 李燕, 肖景华, 等. 中国水稻基因组学研究历史及现状. 生命科学, 2016, 28(10):1113-1121.
[55] Hasegawa H, Yatou O, Katagiri T, et al. Screening for nitrate reductase-deficient mutants in rice (Oryza sativa L.). Japanese Journal of Breeding, 1991, 41(1):95-101.
[56] Hasegawa H. Selection for mutants with low nitrate uptake ability in rice (Oryza sativa). Physiologia Plantarum, 1996, 96(2):199-204.
[57] Vera J S, Sperandio M V L, Fernandes M S, et al. Overexpression of rice genes OsNRT1.1A and OsNRT1.1B restores chlorate uptake and NRT2.1/NAR2.1 expression in Arabidopsis thaliana chl1-5 mutant. Journal of Plant Growth Regulation, 2021, 40(4):1701-1713.
[58] Duan D, Zhang H. A single SNP in NRT1.1B has a major impact on nitrogen use efficiency in rice. Science China-Life Sciences, 2015, 58(8):827-828.
[59] Cai H W, Morishima H. QTL clusters reflect character associations in wild and cultivated rice. Theoretical and Applied Genetics, 2002, 104(8):1217-1228.
doi: 10.1007/s00122-001-0819-7 pmid: 12582574
[60] Wang M Y, Hasegawa T, Beier M, et al. Growth and nitrate reductase activity are impaired in rice Osnlp4 mutants supplied with nitrate. Plant and Cell Physiology, 2021, 62(7):1156-1167.
[61] Konishi M, Yanagisawa S. Arabidopsis NIN-like transcription factors have a central role in nitrate signalling. Nature Communications, 2013, 4:9.
[62] 刘丹, 孙玉友, 柴永山, 等. 水稻氮高效基因型筛选及相关基因研究进展. 中国种业, 2018(10):18-21.
[63] 黎华寿, 张修玉, 姜春晓. 氯酸盐生态毒理研究进展. 生态学杂志, 2005, 24(11):73-78.
[64] 常强. 龙眼反季节成花诱导与碳氮营养关系的研究. 福州: 福建农林大学, 2010.
[65] Huang S L, Han D M, Wang J, et al. Floral induction of longan (Dimocarpus longan) by potassium chlorate: Application, mechanism, and future perspectives. Frontiers in Plant Science, 2021, 12:670587.
[66] Sritontip C, Khaosumain Y, Changjaraja S, et al. Effect of potassium chlorate, potassium nitrate, sodium hypochlorite and thiourea on off-season flowering and photosynthesis of ʻDoʼ longan. Acta Horticulturae, 2005, 665:291-296.
[1] Yuan Shuai, He Mingjuan, Cui Can, Han Yu, Yu Peng, Yi Zhenxie. Effects of Different Base Application Amounts of Calcium- Magnesium Hydrotalcite in Early Rice on Yield and Rice Quality of Double-Cropping Rice in Southern Hunan [J]. Crops, 2024, 40(4): 113-120.
[2] Zhou Zhou, Shen Xinya, Wang Jun, Liu Lijun. Effects of Combination of Controlled-Release Fertilizer and Common Urea on Yield, Nitrogen Use Efficiency and Grain Quality in Rice [J]. Crops, 2024, 40(4): 180-187.
[3] Li Hu, Wu Zishuai, Liu Guanglin, Luo Qunchang, Chen Chuanhua, Zhu Qinan. Effects of Different Cultivation Conditions on Cadmium Content of Grains and Main Characteristics in Rice [J]. Crops, 2024, 40(4): 203-208.
[4] Gu Huaiying, Hu Shiqin, Zhao Qing, Liu Changhua, Meng Lijun. The Progress on Enhancing Salt Tolerance of Rice by Rhizosphere Microorganisms [J]. Crops, 2024, 40(4): 8-13.
[5] Chen Luo, Zhu Wen, Li Wenhui, Zhao Junliang, Zhou Lingyan, Yang Wu. Advances in Research and Application of Rice Bacterial Blight Resistance Genes [J]. Crops, 2024, 40(3): 1-7.
[6] Jiang Min, He Aibin, Sun Huijuan, Man Jianguo, Nie Lixiao. Effects of Nitrogen Management on Growth and Development, Soil Physical and Chemical Properties of Late-Season Rice under Different Straw Retention Treatments of Early-Season Rice in Direct Seeding Mode of Double-Season Rice [J]. Crops, 2024, 40(3): 100-108.
[7] Quan Chengzhe, Li Shufang, Li Henan, Yu Wei, Jin Jinghua. Genetic Diversity Study of Phenotypic Traits of 73 Rice Varieties by Approved in Jinlin Province [J]. Crops, 2024, 40(3): 64-75.
[8] Wang Han, Zheng Dechao, Tian Qinqin, Wu Xiaojing, Zhou Wenxin, Yi Zhenxie. Effects of Harvest Time on Yield and Cadmium Accumulation and Distribution Characteristics of Early Rice [J]. Crops, 2024, 40(2): 105-112.
[9] Xiao Min, Guo Lang, Cui Can, Cheng Zhouqi, Liu Yuwu, Zhuo Le, Wu Si, Yi Zhenxie. Effects of Phosphate Fertilizer Management on Yield Components and Nutrient Uptake and Utilization in Mechanical Transplanting Double-Cropping Rice [J]. Crops, 2024, 40(2): 178-188.
[10] Liu Fanchao, Fang Shumei, Wang Qingyan, Wang Hanxin, Niu Juanjuan, Liang Xilong. Effects of Different Concentrations of Exogenous Amino Acids on Growth and Related Physiological Indicators of Rice Seedlings [J]. Crops, 2024, 40(2): 71-79.
[11] Qin Birong, You Saiya, Chen Shurong, Zhu Lianfeng, Kong Yali, Zhu Chunquan, Tian Wenhao, Zhang Junhua, Jin Qianyu, Cao Xiaochuang, Liu Li. Effects of the Different Nitrogen Levels on Yield, Nitrogen Utilization Efficiency and the Nitrogen Balance of Double-Cropping Rice in Paddy Field [J]. Crops, 2024, 40(2): 89-96.
[12] Ji Ping, Liu Jinlong, Liu Hao, Kuang Jiali, Ye Shihe, Long Sha, Yang Hongtao, Peng Bo, Xu Chen, Liu Xiaolong. Effects of Heat Stress on Yield Components and Quality in Different Rice Varieties during Heading Stage [J]. Crops, 2024, 40(1): 117-125.
[13] Xiong Xin, Deng Jun, Shang Liyan, Sheng Tian, Ye Jiayu, Liu Zichen, Huang Liying, Zhang Yunbo. Effects of Nitrogen and Potassium Fertilizer Interaction on Yield and Radiation Use Efficiency of Hybrid Rice [J]. Crops, 2024, 40(1): 166-173.
[14] Wang Xiaolei, Zhang Yunhe, Mu Jinmeng, Gao Dapeng, Geng Yanqiu, Cao Yiwen, Lu Fen, Guan Zhengwen, Shao Xiwen, Guo Liying. Effects of Soda and Saline-Alkali Stress on Photosynthetic Characteristics and Yield of Rice [J]. Crops, 2024, 40(1): 193-203.
[15] Shao Meihong, Zhu Defeng, Cheng Siming, Cheng Chu, Xu Qunying, Hu Chaoshui. Study on Seedling Quality and Yield of Machine Transplanting Early Rice with the Seedling Raising of Overlayed-Tray Emergence [J]. Crops, 2024, 40(1): 229-232.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!