Crops ›› 2024, Vol. 40 ›› Issue (4): 158-163.doi: 10.16035/j.issn.1001-7283.2024.04.020

Previous Articles     Next Articles

Effects of Nitrogen Application Rate on Cotton Yield Formation and Nitrogen Utilization Efficiency under Rape-Cotton Double Cropping Straw Returning Condition

Zhang Lijuan(), Qin Yukun, Chen Junying   

  1. Jiangxi Economic Crops Research Institute, Jiujiang 332105, Jiangxi, China
  • Received:2023-04-04 Revised:2023-05-09 Online:2024-08-15 Published:2024-08-14

Abstract:

Based on the rape-cotton double cropping model, in order to explore the effects of nitrogen application rate on cotton yield and nitrogen absorption and utilization under the condition of rape and cotton straw returning, six treatments were set, T1 was no straw returning+N 180 kg/ha; T2-T6 refered to nitrogen application of 0, 60, 120, 180 and 240 kg/ha on the basis of straw returning. The results showed that under the condition of straw returning to the field, nitrogen application could improve the leaf area index at flowering and boll stage, thereby improving the population photosynthetic performance of cotton, and further improving the dry matter accumulation of cotton plants. The boll number and boll weight and other yield traits, seed cotton yield were the highest under the nitrogen application level of 180 kg/ha. The agronomic utilization rate and recovery rate of nitrogen fertilizer decreased with the increase of nitrogen application rate, and decreased significantly when the nitrogen application rate were 120 and 180 kg/ha, respectively. Under the same nitrogen application rate (180 kg/ha), compared with no straw return, straw returning increased the yield of seed cotton by 7.7%, and significantly improving the agronomic and physiological utilization rates of nitrogen fertilizer. Based on the growth and development of cotton and the absorption and utilization of nitrogen, under the condition of full returning of rape and cotton straw in the rape-cotton rotation system, the input of fertilizer nitrogen in cotton field can be reduced appropriately, and 120-180 kg/ha was appropriate.

Key words: Rape-cotton double cropping, Straw returning, Nitrogen fertilizer, Yield, Nitrogen fertilizer utilization rate

Table 1

Effects of different treatments on agronomic characteristics of cotton plants"

处理
Treatment
株高
Plant height
(cm)
茎粗
Stem diameter
(mm)
果枝数
Number of fruit
branches
T1 110.8±15.9ab 11.1±2.0ab 11.6±1.5a
T2 95.3±6.8b 10.0±1.0b 11.4±0.7a
T3 104.3±2.1ab 10.1±0.6ab 11.2±1.3a
T4 108.8±10.4ab 11.3±0.8ab 12.0±2.5a
T5 114.3±9.5a 12.3±1.0a 12.2±1.1a
T6 110.1±5.9ab 11.3±0.1ab 12.1±0.3a

Table 2

Effects of different treatments on dry matter accumulation and leaf area index of cotton at flowering and bolling stage"

处理
Treatment
干物质积累量(g/株)
Dry matter accumulation (g/plant)
LAI
营养器官
Vegetative
organ
生殖器官
Reproduction
organ
总干重
Total dry
weight
T1 67.8±3.6b 30.2±0.8b 98.0±4.1bc 4.41±0.92c
T2 47.6±1.0d 19.9±2.7c 67.5±1.9d 3.21±0.31d
T3 55.3±4.4c 34.3±2.6ab 89.6±3.7c 3.59±0.60cd
T4 70.1±5.4b 35.2±3.8ab 105.3±5.8ab 4.15±0.71c
T5 73.4±3.6b 39.9±8.1a 113.3±11.7a 5.39±0.42b
T6 79.5±2.1a 27.8±8.5bc 107.3±7.3ab 6.09±0.14a

Table 3

Effects of different treatments on cotton yield and its components and harvest index"

处理
Treatment
铃数
Boll number (×104/hm2)
铃重
Boll weight (g)
籽棉产量
Seed cotton yield (kg/hm2)
生物产量
Biological yield (t/hm2)
收获指数
Harvest index (%)
T1 60.74±3.14b 5.83±0.06b 3460.5±30.0b 15.33±0.89a 22.61±1.44ab
T2 48.07±4.51c 5.64±0.05c 2613.0±384.0d 12.73±0.64c 20.47±0.95b
T3 59.18±0.68b 5.86±0.08ab 3094.5±27.0c 13.59±0.52bc 22.78±1.02ab
T4 63.38±2.85a 5.91±0.06ab 3490.5±127.5ab 14.25±0.87ab 24.53±0.96a
T5 64.64±2.19a 5.99±0.09a 3565.0±108.5a 15.28±0.15a 23.34±1.66ab
T6 61.69±3.14ab 5.70±0.03c 3443.4±28.8b 14.95±0.57a 23.05±1.09ab

Fig.1

Relationship between nitrogen application rate and seed cotton yield under straw returning"

Table 4

Effects of different treatments on nitrogen absorption kg/hm2"

处理
Treatment
氮素吸收Nitrogen absorption
籽棉Seed cotton 废弃物Waste 总量Total amount
T1 4.9±0.1b 195.5±12.1a 200.4±12.2a
T2 3.9±0.2c 128.4±7.4c 132.3±7.5c
T3 4.8±0.4b 157.8±8.2b 162.6±7.9b
T4 4.8±0.2b 178.1±12.5a 182.9±12.3a
T5 5.6±0.5a 190.4±5.7a 195.9±6.2a
T6 4.8±0.3b 184.3±3.6a 189.1±3.3a

Table 5

Effects of different treatments on nitrogen fertilizer utilization"

处理
Treatment
农学利用率
NAE (kg/kg)
生理利用率
NPE (kg/kg)
回收利用率
NRE (%)
氮肥收获指数
NHI
T1 4.71±0.51c 12.46±1.28b 37.82±7.73ab 2.46±0.38a
T2 3.03±0.53a
T3 8.03±1.24a 15.93±0.93a 50.42±4.47a 3.05±1.36a
T4 7.32±2.28a 17.36±3.55a 42.17±12.32a 2.68±0.53a
T5 5.29±1.18b 14.98±0.94a 35.32±8.42ab 2.84±0.06a
T6 3.46±1.28c 14.64±2.93a 23.65±5.40b 2.53±0.30a
[1] 沙洪林, 佟时, 张维友, 等. 我国农作物秸秆产生及综合利用现状分析. 吉林农业科学, 2010, 35(4):51-55.
[2] 刘瑞伟. 我国农作物秸秆利用现状及对策. 农业与技术, 2009(1):7-9.
[3] 张学林, 周亚男, 李晓立, 等. 氮肥对室内和大田条件下作物秸秆分解和养分释放的影响. 中国农业科学, 2019, 52(10):1746-1760.
doi: 10.3864/j.issn.0578-1752.2019.10.008
[4] 吴鹏年, 王艳丽, 李培富, 等. 滴灌条件下秸秆还田配施氮肥对宁夏扬黄灌区春玉米产量和土壤理化性质的影响. 应用生态学报, 2019, 30(12):4177-4185.
doi: 10.13287/j.1001-9332.201912.022
[5] 李涛, 何春娥, 葛晓颖, 等. 秸秆还田施氮调节碳氮比对土壤无机氮、酶活性及作物产量的影响. 中国生态农业学报, 2016, 24(12):1633-1642.
[6] 张丽娟, 秦宇坤, 程慧煌, 等. 鄱阳湖区赣北棉田地表径流氮磷流失特征研究. 中国农业科技导报, 2022, 24(6):166-175.
doi: 10.13304/j.nykjdb.2021.0374
[7] 李鹏程, 董合林, 刘爱忠, 等. 施氮量对棉花功能叶片生理特性、氮素利用效率及产量的影响. 植物营养与肥料学报, 2015, 21(1):81-91.
[8] 吴亚男, 齐华, 盛耀辉, 等. 密度、氮肥对春玉米光合特性、干物质积累及产量的影响. 玉米科学, 2011, 19(5):124-127.
[9] 李涛, 何春娥, 葛晓颖, 等. 秸秆还田施氮调节碳氮比对土壤无机氮、酶活性及作物产量的影响. 中国生态农业学报, 2016, 24(12):1633-1642.
[10] 王金金, 刘小利, 刘佩, 等. 秸秆还田条件下减施氮肥对旱地冬小麦水氮利用、光合及产量的影响. 麦类作物学报, 2020, 40(2):210-219.
[11] 吴裕如, 王承, 艾亥麦提·艾麦尔江, 等. 油菜秸秆还田及氮肥减量对夏玉米生长发育及产量的影响. 湖南农业大学学报(自然科学版), 2020, 46(6):641-648.
[12] 胡中泽, 衣政伟, 杨大柳, 等. 氮肥减施与花生秸秆还田对麦田土壤氨挥发、氮肥利用率及产量的影响. 江苏农业学报, 2022, 38(6):1492-1499.
[13] 张建军, 党翼, 赵刚, 等. 秸秆还田与氮肥减施对旱地春玉米产量及生理指标的影响. 草业学报, 2019, 28(10):156-165.
doi: 10.11686/cyxb2018749
[14] 李晓韦. 紫云英翻压及其与稻草协同还田的氮肥减施效应. 合肥: 安徽农业大学, 2021.
[15] 王智. 不同施氮量下秸秆还田对棉花产量形成与氮肥利用效率的影响及其机制. 南京: 南京农业大学, 2020.
[16] 李明华, 路茜, 崔静, 等. 增密减氮对滴灌棉花干物质积累分配和产量的影响. 新疆农业科学, 2020, 57(6):990-999.
doi: 10.6048/j.issn.1001-4330.2020.06.002
[17] 张宏, 曾雄, 王爱莲, 等. 不同施氮量对棉花产量、养分吸收及氮素利用的影响. 新疆农业科学, 2021, 58(9):1656-1664.
doi: 10.6048/j.issn.1001-4330.2021.09.011
[18] 李飞, 郭利双, 李彩红, 等. 施氮量对油后直播棉花产量、品质及生物量的影响. 核农学报, 2020, 34(9):2088-2094.
doi: 10.11869/j.issn.100-8551.2020.09.2088
[19] Ladha J K, Pathak H, Krupnik T J, et al. Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects. Advances in Agronomy, 2005, 87:85-156.
[20] 宋兴虎, Tufail A W, Biangkham S, 等. 氮肥用量及其后效对棉花产量和生物质累积动态的影响. 棉花学报, 2018, 30(2):145-154.
doi: 10.11963/1002-7807.sxhygz.20180315
[21] 秦宇坤, 陈俊英, 王玉萍, 等. 施氮量对油后直播棉生长发育及产量的影响. 中国棉花, 2020, 47(2):24-27,39.
doi: 1000-632X.qykzlj.20200214
[1] Yuan Shuai, He Mingjuan, Cui Can, Han Yu, Yu Peng, Yi Zhenxie. Effects of Different Base Application Amounts of Calcium- Magnesium Hydrotalcite in Early Rice on Yield and Rice Quality of Double-Cropping Rice in Southern Hunan [J]. Crops, 2024, 40(4): 113-120.
[2] Wang Wenxia, Chang Bokai, Xia Qing, Zhi Hui, Du Jie. Effects of Foliar Spraying Selenium on Physiological Characteristics, Yield and Quality of Flax [J]. Crops, 2024, 40(4): 130-137.
[3] Du Jie, Feng Yu, Xia Qing, Zhi Hui, Wang Wenxia. Mechanism of Exogenous Brassinolide in Alleviating Drought Stress Injury at Panicle Differentiation Stage in Foxtail Millet [J]. Crops, 2024, 40(4): 144-151.
[4] Cao Li, Yang Jianhui, Zhang Li, Ren Wei, Cao Zhengpeng, Ma Fang, Guan Yong. Effects of Different Concentrations of Nano-Selenium Fertilizer on Yield, Quality and Selenium Content of Broccoli [J]. Crops, 2024, 40(4): 152-157.
[5] Ren Liang, Fang Mengying, Wu Zhihai, Dong Xuerui, Lu Lin, Yan Peng, Dong Zhiqiang. Effects of Ethylene-Chlormequat-Potassium (ECK) on Sorghum [Sorghum bicolor (L.) Moench.] Lodging Resistance and Yield [J]. Crops, 2024, 40(4): 164-171.
[6] Zhou Zhou, Shen Xinya, Wang Jun, Liu Lijun. Effects of Combination of Controlled-Release Fertilizer and Common Urea on Yield, Nitrogen Use Efficiency and Grain Quality in Rice [J]. Crops, 2024, 40(4): 180-187.
[7] Lü Bo, Ding Liang, Guo Cong, Chen Feng, Zhou Haiping, Wang Xuesong, Dong Xiaolin, Xiang Fayun. Effects of Compound Microbial Fertilizer on Soil Nutrients and Rhizosphere Bacterial Community in Cotton Field [J]. Crops, 2024, 40(4): 209-215.
[8] Li Chunhua, Wu Han, Jiayangduola , Wang Chunlong, Wang Yanqing, Ren Changzhong. Effects of Sowing Date on Agronomic Traits and Yield of Common Buckwheat Varieties (Lines) [J]. Crops, 2024, 40(4): 216-222.
[9] Wang Fugui, Zou Runhou, Gao Julin, Wang Zhen, Cheng Zhipeng, Hao Qi, Zhang Yuezhong, Wang Zhigang. Effects of Straw Returning Methods on Soil Water and Heat and Seedling Growth and Yield of Spring Maize in Eastern Region of Inner Mongolia [J]. Crops, 2024, 40(4): 223-231.
[10] Hou Yuchen, Pang Chunhua, Zhang Yongqing, Kang Shuyu, Wu Yueyue, Yan Jingrong, Wang Jiaqi. Effects of Biochar and Nitrogen Fertilizer on the Physiological Growth Characteristics of Quinoa Seedlings under Saline Alkali Stress [J]. Crops, 2024, 40(4): 240-246.
[11] Wang Ruopeng, Lü Wei, Liu Wenping, Wen Fei, Han Junmei, Liu Xiaxia. Effects of Different Cultivation Modes on Yield of Sesame and Water and Heat of Soil [J]. Crops, 2024, 40(4): 247-252.
[12] Guo Haibin, Zhang Jungang, Wang Wenwen, Xue Zhiwei, Xu Haitao, Feng Xiaoxi, Wang Bingong, Wang Chengye. Response of Photosynthetic Characteristics, Root Growth and Yield of Summer Maize to Subsoiling and Increasing Density in Lime Concretion Black Soil [J]. Crops, 2024, 40(3): 109-118.
[13] Liu Yue, Jia Yonghong, Yu Yuehua, Zhang Jinshan, Wang Runqi, Li Dandan, Shi Shubing. Effects of Nitrogen Fertilizer Management on Growth and Development, Yield and Quality of Peanut in Northern Xinjiang [J]. Crops, 2024, 40(3): 119-126.
[14] Zhang Suyu, Yue Junqin, Li Xiangdong, Jin Haiyang, Ren Dechao, Yang Mingda, Shao Yunhui, Wang Hanfang, Fang Baoting, Zhang Deqi, Shi Yanhua, Qin Feng, Cheng Hongjian. Effects of Nitrogen Application on Photosynthetic Rate, Dry Matter Accumulation after Anthesis and Yield of Zhengmai 366 [J]. Crops, 2024, 40(3): 127-132.
[15] Xia Yulan, Wang Dexun, Zhao Yuanyuan, Fan Zhiyong, Li Juan, Wang Ge, Zhao Zhihao, Shi Hongzhi. Effects of Potassium Fertilizer Dosage and Topdressing Period on Chemical Composition, Yield and Quality of Leaves ofBlack Shank-Resistant Tobacco Honghuadajinyuan [J]. Crops, 2024, 40(3): 133-140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!