Crops ›› 2024, Vol. 40 ›› Issue (3): 109-118.doi: 10.16035/j.issn.1001-7283.2024.03.014

Previous Articles     Next Articles

Response of Photosynthetic Characteristics, Root Growth and Yield of Summer Maize to Subsoiling and Increasing Density in Lime Concretion Black Soil

Guo Haibin1(), Zhang Jungang1, Wang Wenwen2, Xue Zhiwei3, Xu Haitao1, Feng Xiaoxi1, Wang Bingong4(), Wang Chengye1   

  1. 1Zhumadian Academy of Agricultural Sciences / Zhumadian Comprehensive Experimental Station, Henan Maize Industrial Technology System, Zhumadian 463000, Henan, China
    2Pingyu Agricultural Science and Technology Experimental Station, Pingyu 463400, Henan, China
    3Anyang Academy of Agricultural Sciences, Anyang 455000, Henan, China
    4Shangcai County Agriculture and Rural Bureau, Shangcai 463800, Henan, China
  • Received:2023-02-03 Revised:2023-05-15 Online:2024-06-15 Published:2024-06-18

Abstract:

In order to investigate the characteristics of changes in photosynthetic characteristics, root growth and grain yield of summer maize after subsoiling and density increasing in lime concretion black soil in the south of Huang-Huai-Hai region, a field experiment was conducted with two tillage methods (conventional rotary tillage and subsoiling tillage) and five planting densities (4.5×104, 6.0×104, 7.5×104, 9.0×104, 10.5×104 plants/ha). The results showed that after subsoiling tillage, the light transmittances of ear position layer and bottom layer, net photosynthetic rate, transpiration rate and stomatal conductance increased by 14.8%, 10.9%, 9.0%, 3.7% and 12.7%, respectively. The root dry weight, length and surface area increased by 19.6%, 15.8% and 15.0%, respectively. The ear number, grain number per ear and 1000-grain weight increased by 1.4%, 4.3% and 5.4%, respectively. The maximum yield was obtained under the planting density of 9.09×104 plants/ha, compared with conventional rotary tillage, the optimum planting density increased by 9.7%, and the average yield increased by 8.4%. Therefore, subsoiling tillage can improve the potential of increasing density and yield of summer maize in lime concretion black soil in the south of Huang-Huai-Hai.

Key words: Summer maize, Subsoiling tillage, Planting density, Photosynthetic characteristics, Root distribution, Grain yield

Fig.1

Monthly precipitation, average temperature and sunshine hours from 2021 to 2022"

Table 1

Effects of tillage method, planting density and their interaction on photosynthetic characteristics, root growth and grain yield of maize"

年份Year 处理Treatment LTE LTB Pn Tr Gs RDW RL RUA EN GNPE 1000-GW GY
2021 耕作方式 <0.001 < 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001
种植密度 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
耕作方式×种植密度 0.022 0.037 0.015 0.902 0.045 0.009 0.001 <0.001 0.044 <0.001 0.021 <0.001
2022 耕作方式 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001
种植密度 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
耕作方式×种植密度 0.001 0.034 0.042 0.003 0.039 0.005 <0.001 <0.001 0.035 <0.001 0.025 <0.001

Fig.2

Changes of canopy light transmittance under different planting densities of two tillage methods Different lowercase letters indicate significant difference at the 5% level in the same tillage method, the same below."

Fig.3

Changes of photosynthetic characteristics under different planting densities of two tillage methods"

Fig.4

Changes of root dry weight under different planting densities of two tillage methods"

Fig.5

Changes of root dry weight proportion distribution under different planting densities of two tillage methods"

Fig.6

Changes of root length under different planting densities of two tillage methods"

Fig.7

Changes of root length proportion distribution under different planting densities of two tillage methods"

Fig.8

Changes of root surface area under different planting densities of two tillage methods"

Fig.9

Changes of root surface area proportion distribution under different planting densities of two tillage methods"

Fig.10

Changes of yield components under different planting densities of two tillage methods"

Fig.11

Changes of grain yield under different planting densities of two tillage methods"

[1] 吕巨智, 范继征, 谢小东, 等. 不同耕作方式对玉米生长发育、产量及品质的影响. 山东农业科学, 2021, 53(7):34-38.
[2] 石德杨, 李艳红, 夏德军, 等. 种植密度对夏玉米根系特性及氮肥吸收的影响. 中国农业科学, 2017, 50(11):2006-2017.
doi: 10.3864/j.issn.0578-1752.2017.11.006
[3] 王空军, 郑洪健, 刘开昌, 等. 我国玉米品种更替过程中根系时空分布特性的演变植株. 植物生态学报, 2001, 25(4):472- 475.
[4] 于晓芳, 孙洪利, 高聚林, 等. 深松对不同耐密性春玉米增密增产调控机制. 农业工程学报, 2019, 35(13):35-46.
[5] 王春雷. 深松对不同种植密度下春玉米冠层光合特性及产量的影响. 北方农业学报, 2020, 48(6):22-29.
doi: 10.12190/j.issn.2096-1197.2020.06.04
[6] 韩成卫, 孔晓民, 宋春林, 等. 山东省褐土土壤容重对玉米生长发育及产量形成的影响. 中国土壤与肥料, 2017(6):143-148.
[7] 王富贵, 于晓芳, 高聚林, 等. 不同类型玉米品种冠层结构及其光合特性对深松增密的响应. 西北农林科技大学学报(自然科学版), 2019, 47(2):33-44.
[8] 管艳霞, 王群, 赵寒梅, 等. 深松和施肥方式对砂姜黑土区夏玉米生长、光合特性及产量的影响. 河南农业科学, 2021, 50 (4):31-39.
[9] 吴广俊, 刘鹏, 董树亭, 等. 不同深松深度对夏玉米根系时空分布及氮素利用的响应. 山东农业科学, 2016, 48(10):92-97.
[10] 侯海鹏, 丁在松, 马玮, 等. 条带深松耕作方式对密植夏玉米产量性能的影响. 玉米科学, 2015, 23(6):71-75,83.
[11] 刘卫玲, 程思贤, 吴健, 等. 深松(耕)时期与方式对砂姜黑土耕层改良及其冬小麦物质积累和养分吸收的影响. 河南农业大学学报, 2020, 54(3):392-399,429.
[12] 王玥凯, 郭自春, 张中彬, 等. 不同耕作方式对砂姜黑土物理性质和玉米生长的影响. 土壤学报, 2019, 56(6):1371-1380.
[13] 徐丽娜, 闫艳, 梅沛沛, 等. 不同玉米品种冠层光分布和湿度比较研究. 华北农学报, 2020, 35(6):106-112.
doi: 10.7668/hbnxb.20191147
[14] 刘武仁, 郑金玉, 罗洋, 等. 不同耕作方式对玉米叶片冠层光合特性的影响. 玉米科学, 2012, 20(6):103-106,111.
[15] 李少昆, 王崇桃. 作物株型和冠层结构信息获取与表述的方法(综述). 石河子大学学报(自然科学版), 1997(3):81-87.
[16] 李明, 李文雄. 肥料和密度对寒地高产玉米源库性状及产量的调节作用. 中国农业科学, 2004, 37(8):1130-1137.
[17] 郑毅, 张立军, 崔振海, 等. 种植密度对不同株型夏玉米冠层结构和光合势的影响. 江苏农业科学, 2010(3):116-118,121.
[18] 杨胜举, 佟玲, 吴宣毅, 等. 玉米冠层辐射分布和产量对种植密度和水分的响应研究. 灌溉排水学报, 2021, 40(8):19-26.
[19] 丁相鹏, 白晶, 张春雨, 等. 扩行缩株对夏玉米群体冠层结构及产量的影响. 中国农业科学, 2020, 53(19):3915-3927.
doi: 10.3864/j.issn.0578-1752.2020.19.006
[20] 王新兵, 侯海鹏, 周宝元, 等. 条带深松对不同密度玉米群体根系空间分布的调节效应. 作物学报, 2014, 40(12):2136- 2148.
doi: 10.3724/SP.J.1006.2014.02136
[21] 蔡红光, 刘剑钊, 张秀芝, 等. 不同根构型玉米的根系形态及其对密度的响应. 玉米科学, 2014, 22(5):81-85.
[22] 宋海星, 李生秀. 玉米生长空间对根系吸收特性的影响. 中国农业科学, 2003, 36(8):899-904.
[23] 李宗新, 陈源泉, 王庆成, 等. 种植密度对紧凑型玉米鲁单818根系生长动态及产量的影响. 玉米科学, 2013, 21(1):96-101,106.
[24] 柳宝林. 深松对不同密度春玉米群体调控效应的差异性研究. 通辽: 内蒙古民族大学, 2018.
[25] 罗方, 杨恒山, 张玉芹, 等. 春玉米干物质积累及转运对种植模式和种植密度的响应. 华北农学报, 2019, 34(2):124-131.
doi: 10.7668/hbnxb.201751066
[26] 赵致, 张荣达, 吴盛黎, 等. 紧凑型玉米高产栽培理论与技术研究. 中国农业科学, 2001, 34(5):537-543.
[27] 徐宗贵, 孙磊, 王浩, 等. 种植密度对旱地不同株型春玉米品种光合特性与产量的影响. 中国农业科学, 2017, 50(13):2463- 2475.
doi: 10.3864/j.issn.0578-1752.2017.13.006
[28] 陈传永, 侯玉虹, 孙锐, 等. 密植对不同玉米品种产量性能的影响及其耐密性分析. 作物学报, 2010, 36(7):1153-1160.
[29] 张玉芹, 杨恒山, 高聚林, 等. 超高产春玉米冠层结构及其生理特性. 中国农业科学, 2011, 44(21):4367-4376.
doi: 10.3864/j.issn.0578-1752.2011.21.005
[30] 谢振江, 李明顺, 李新海, 等. 密度压力下玉米杂交种农艺性状与产量相关性研究. 玉米科学, 2007, 15(4):100-104.
[31] 何冬冬, 杨恒山, 张玉芹. 扩行距、 缩株距对春玉米冠层结构及产量的影响. 中国生态农业学报, 2018, 26(3):397-408.
[32] 刘卫玲, 程思贤, 李娜, 等. 深松(耕)时期与方式对砂姜黑土耕层养分和冬小麦、夏玉米产量的影响. 河南农业科学, 2020, 49(3):8-16.
[33] 赵秉强, 张福锁, 李增嘉, 等. 套作夏玉米根系数量与活性的空间分布及变化规律. 植物营养与肥料学报, 2003, 9(1):81-86.
[34] 李嵩, 韩巍, 张凯, 等. 不同耕作方式对辽西褐土物理性状及玉米根系分布的影响. 玉米科学, 2020, 28(6):101-106.
[35] 侯海鹏, 丁在松, 马玮, 等. 高产夏玉米产量性能特征及密度深松调控效应. 作物学报, 2013, 39(6):1069-1077.
[1] Du Qingfu, Shang Lili, Lü Jiahao, Zhang Ruiqing, Yao Jiangang, Qiu Pengfei, Zhao Jianwei, He Shaozhen. Effects of Different Light Intensity on Photosynthetic Characteristics and Flowering of Sweet Potato [J]. Crops, 2024, 40(2): 172-177.
[2] Xie Mengfan, Jia Haijiang, Qu Yuankai, Nong Shiying, Li Junlin, Wang Jie, Liu Liwei, Yan Huifeng. Effects of Planting Density and Nitrogen Fertilizer Application Rate on Leaf Development and Yield of Flue-Cured Tobacco in Baise Tobacco Region [J]. Crops, 2024, 40(2): 189-197.
[3] Wang Huaiping, Yang Mingda, Zhang Suyu, Li Shuai, Guan Xiaokang, Wang Tongchao. Effects of Different Water-Saving Irrigation Modes on Growth, Yield, and Water Utilization of Summer Maize [J]. Crops, 2024, 40(2): 206-212.
[4] Guan Qinglin, Piao Shengyuan, Zhang Siwei, Wang Jun, Lei Yunkang, Zhong Qiu, Zhao Mingqin. Effects of Combined Application of Medium-Trace Elements on Photosynthetic Characteristics, Carbon and Nitrogen Metabolism, Yield and Quality of Cigar Tobacco [J]. Crops, 2023, 39(5): 187-196.
[5] Zhang Dongxu, Hu Danzhu, Yan Jinlong, Feng Liyun, Wu Zhiyuan, Zhang Junling, Li Yanhua. Effects of Spraying Streptomyces on Yield and Photosynthetic Characteristics of Late-Sown Wheat under Different Crop Rotations [J]. Crops, 2023, 39(5): 255-263.
[6] Li Yuxin, Lu Min, Zhao Jiuran, Wang Ronghuan, Xu Tianjun, Lü Tianfang, Cai Wantao, Zhang Yong, Xue Honghe, Liu Yueʼe. The Production Status Investigation and Analysis of Summer Maize in Beijing-Tianjin-Tangshan Region [J]. Crops, 2023, 39(4): 174-181.
[7] Zhang Guozhong, Li Juan, Li Yucai, Jin Shoulin, Hong Ruke, Huang Dajun, Pu Shihuang, Shi Congbo, Duan Zilin, Ma Di, Chen Lijuan. The Effects of Nitrogen Fertilizer Reduction and Transplanting Density on Yield and Eating Quality of Japonica Hybrid Rice Dianheyou 615 [J]. Crops, 2023, 39(3): 109-115.
[8] Luo Siwei, Shi Xiunan, Jia Yonghong, Zhang Jinshan, Wang Kai, Li Dandan, Wang Runqi, Dong Yanxue, Shi Shubing. Effects of Drip Irrigation Capillary Spacing and Drop Spacing on Photosynthesis, Dry matter Accumulation, and Yield Formation of Uniformly Sown Winter Wheat [J]. Crops, 2023, 39(3): 230-237.
[9] Zhang Haibin, Wu Xiaohua, Yu Meiling, Wang Xiaobing, Ye Jun, Cui Siyu, Li Yuanqing, Wang Zhanxian, Zhang Hongxu, Xue Wei, Li Yan, Cui Guohui, Zhao Xuanwei, Liu Juan. AMMI Model Analysis of Grain Yield of Wheat Varieties (Lines) in Inner Mongolia Regional Trials [J]. Crops, 2023, 39(3): 27-34.
[10] Zhang Panpan, Li Chuan, Zhang Meiwei, Zhao Xia, Huang Lu, Liu Jingbao, Qiao Jiangfang. Effects of Nitrification Inhibitor on the Nitrogen Concentration and Yield in Summer Maize Plants and Soil under Reduced Nitrogen Application [J]. Crops, 2023, 39(2): 145-150.
[11] Liang Ping, Zhang Yongqing, Zhang Meng, Xue Xiaojiao, Li Pingping, Zhang Wenyan, Wang Dan, Zhao Gang. Effects of PAM Application Depth on the Growth and Physiological Indexes of Quinoa under Saline Alkali Stress [J]. Crops, 2023, 39(2): 178-185.
[12] Ma Jiyu, Wang Shuang, Li Yun, Guo Zhenqing, Wang Jian, Lin Xiaohu, Han Yucui. Effects of Planting Density on Agronomic Characteristics and Yield of Foxtail Millet [J]. Crops, 2023, 39(2): 222-228.
[13] Gao Wei, Hao Qingting, Zhang Zeyan, Wang Qian, Yan Hubin, Zhu Huijun, Zhao Xueying, Zhang Yaowen. Effects of Nitrogen and Phosphorus Application on Yield, Root Morphology and Photosynthetic Characteristics of Adzuki Bean [J]. Crops, 2023, 39(1): 109-114.
[14] Zhang Dongxia, Qin Anzhen. Relationships among Crop Evapotranspiration, Soil Moisture and Temperature in Winter Wheat-Summer Maize Cropping System [J]. Crops, 2022, 38(6): 145-151.
[15] Qiao Jiangfang, Zhang Panpan, Shao Yunhui, Liu Jingbao, Li Chuan, Zhang Meiwei, Huang Lu. Effects of Different Planting Densities and Varieties on Dry Matter Production and Yield Components of Summer Maize [J]. Crops, 2022, 38(6): 186-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!