Crops ›› 2024, Vol. 40 ›› Issue (6): 226-231.doi: 10.16035/j.issn.1001-7283.2024.06.030

Previous Articles     Next Articles

Effects of Different Concentrations of Imazamox Treatments on Parasitism of Orobanche cumana Wallr.

Zhang Zhiwei1(), Sun Xuetao1, Xie Guohua2, Wang Feiyu1, Zhang Yukuan1, Du Lei3, Zhao Jun1, Zhang Jian1   

  1. 1College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
    2Agricultural and Animal Husbandry Technology Extension Center of Wuchuan County, Hohhot 011700, Inner Mongolia, China
    3Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, Inner Mongolia, China
  • Received:2023-11-19 Revised:2024-06-13 Online:2024-12-15 Published:2024-12-05

Abstract:

Orobanche cumana Wallr. is a parasitic weed that frequently causes sunflower yield and quality to decline, which has a negative impact on the development of the sunflower industry. To explore the effective means to control the Orobanche cumana, this study used the herbicide-resistant sunflower variety Xinshi 1 as the material and treated it with the herbicide imazamox from the root to study the effects of different concentrations of imazamox on the parasitism of Orobanche cumana. The goal of this research was to discover effective control methods for sunflower parasitism. The results showed that compared with the control, after treating with 1:300, 1:600 and 1:1200 diluted imazamox, the germination rates of Orobanche cumana seeds significantly decreased by 26.1%, 23.3% and 8.1%, respectively. In the culture-dish system, compared with the control, the number of parasitic nodules produced on sunflower roots decreased by 83.4% and 37.9%, the fresh weight of nodules decreased by 86.3% and 56.5%, and the dry weight of nodules decreased by 87.9% and 53.1% significantly after treating with 1:300 and 1:600 diluted imazamox respectively; Under pot-culture condition, compared with the control, the total number of Orobanche cumana parasitized on the roots of sunflower plants decreased by 100.0%, 90.3% and 70.8%, the fresh weight of Orobanche cumana decreased by 100.0%, 56.2% and 36.4% significantly after treating with 1:300, 1:600 and 1:1200 diluted imazamox respectively. The dry weight of Orobanche cumana under 1:1200 treatment was not significantly different from that of the control, while that of 1:300 and 1:600 treatments were significantly reduced by 100.0% and 45.1%, respectively. Therefore, treating with 1:300 and 1:600 dilution of imazamox can effectively inhibit the parasitism of Orobanche cumana, and can be used in combination with the herbicide-resistant sunflower variety Xinshi 1 to prevent and control the harm of Orobanche cumana in the field.

Key words: Orobanche cumana Wallr., Parasitic ability, Herbicide, Imazamox

Fig.1

The growth status of sunflowers after treating with imazamox"

Fig.2

The effects of imazamox treatments on the germination rates of Orobanche cumana seeds Different lowercase letters mean significant differences (P < 0.05), the same below."

Fig.3

The Orobanche cumana nodules production after treating with imazamox"

Fig.4

The effects of imazamox treatment on the number of Orobanche cumana nodules"

Fig.5

The effects of imazamox treatments on the fresh and dry weight of Orobanche cumana nodules"

Fig.6

The effects of imazamox treatments on the parasitic number of Orobanche cumana"

Fig.7

The effects of imazamox treatments on the fresh and dry weight of Orobanche cumana"

[1] 郭树春, 李素萍, 孙瑞芬, 等. 世界及我国向日葵产业发展总体情况分析. 中国种业, 2021(7):10-13.
[2] 闻金光, 李素萍, 郭树春, 等. 我国向日葵种业的建立与发展. 中国种业, 2022(2):28-32.
[3] 冯九焕. 中国食用向日葵育种国产化历程及研究进展. 西北植物学报, 2022, 42(10):1779-1800.
[4] 夏善勇, 赵东升. 向日葵列当生物学特性及防治措施. 农业开发与装备, 2021(3):222-223.
[5] 冷廷瑞, 姚德军, 李秀华, 等. 吉林省向日葵列当防治药剂筛选. 黑龙江农业科学, 2014(11):63-65.
[6] Parker C. Observations on the current status of Orobanche and Striga problems worldwide. Pest Management Science, 2009, 65 (5):453-459.
doi: 10.1002/ps.1713 pmid: 19206075
[7] Martin-Sanz A, Malek J, Fernandez-Martinez J M, et al. Increased virulence in sunflower broomrape (Orobanche cumana Wallr.) populations from southern Spain is associated with greater genetic diversity. Frontiers in Plant Science, 2016, 7:589.
[8] 张璐, 胡玲军, 赵思峰. 向日葵列当在中国的风险评估和防控策略. 中国植保导刊, 2020, 40(8):80-83.
[9] Echevarria-Zomeno S, Perez-De-Luque A, Jorrin J, et al. Pre-haustorial resistance to broomrape (Orobanche cumana) in sunflower (Helianthus annuus): cytochemical studies. Journal of Experimental Botany, 2006, 57(15):4189-4200.
[10] Ye X X, Zhang M, Zhang M Y, et al. Assessing the performance of maize (Zea mays L.) as trap crops for the management of sunflower broomrape (Orobanche cumana Wallr.). Agronomy, 2020, 1(10):100.
[11] 郑喜清, 王靖, 邸娜, 等. 不同向日葵播期、磷肥用量及除草剂对向日葵列当寄生的影响. 植物检疫, 2021, 35(2):59-62.
[12] Strelnikov E, Antonova T, Gorlova L, et al. The environmentally safe method of control of broomrape (Orobanche cumana Wallr.) parasitizing on sunflower. BIO Web of Conferences, 2020(21):39.
[13] 郭振国, 陈杰, Muhammad R N, 等. 生防菌对向日葵列当的防除作用的初步研究. 中国农业大学学报, 2018, 23(6):59-69.
[14] 李雨浓. 向日葵列当防治措施研究进展. 黑龙江农业科学, 2023(5):101-106.
[15] 马永清, 董淑琦, 任祥祥, 等. 列当杂草及其防除措施展望. 中国生物防治学报, 2012, 28(1):133-138.
[16] 王海伟, 崔超, 王靖, 等. 不同施药处理对列当寄生向日葵产量相关性状的影响. 安徽农学通报, 2020, 26(增1):90-92.
[17] 路伟, 李琳, 李世奎, 等. 水溶性氟乐灵纳米制剂对向日葵列当的毒力及田间药效. 植物保护, 2019, 45(3):237-240.
[18] 陈海伟, 张鲁华, 陈德富, 等. 除草剂及抗除草剂作物的应用现状与展望. 生物技术通报, 2012(10):35-40.
[19] 石胜华, 柳惠卿, 云晓鹏, 等. 向日葵抗列当水平室内鉴定体系准确性评价及不同品种抗列当水平鉴定. 杂草学报, 2019, 37(2):28-34.
[20] 段锐, 刘志达, 郭晓晴, 等. ‘锦苗标靶’诱抗剂抑制列当寄生向日葵的机制研究. 西北植物学报, 2022, 42(10):1769- 1778.
[21] Dalia L G, Portnoy V H, Mayer A M, et al. Pectolytic activity by the haustorium of the parasitic plant Orobanche L. (Orobanchaceae) in host roots. Annals of Botany, 1998, 81(2):319-326.
[22] Hatcher P E, Froud-Williams R J. Weed research: expanding horizons. Hoboken, New Jersey:John Wiley & Sons Ltd., 2017:271-312.
[23] 吴文龙, 姜翠兰, 黄兆峰, 等. 我国向日葵列当发生危害现状调查. 植物保护, 2020, 46(3):266-273.
[24] 何伟, 杨华, 许建军, 等. 二甲戊灵、扑草净对加工用番茄和列当种子萌芽抑制作用研究. 新疆农业科学, 2017, 54(2):320-326.
[25] Soriano G, Siciliano A, Fernandez-Aparicio M, et al. Iridoid glycosides isolated from Bellardia trixago identified as inhibitors of Orobanche cumana radicle growth. Toxins (Basel), 2022, 14(8):559.
[26] 李淑娥, 巨瑞芹, 杨渡. 新疆瓜类主要病害及其综合防治技术. 新疆农业科学, 1991(2):74-75.
[27] 白全江, 云晓鹏, 杜磊, 等. 抗除草剂新品种防除向日葵列当用药技术研究. 北方农业学报, 2018, 46(4):77-81.
[28] 田晓燕, 云晓鹏, 杜磊, 等. 向日葵列当综合防控技术集成与应用. 中国植保导刊, 2020, 40(8):53-56.
[1] Lü Zengshuai, Dong Hongye, Wang Peng, Duan Wei, Liu Shengli, Liu Yantao. Progress in Mechanism of Herbicide Resistance and Breeding of Sunflower [J]. Crops, 2024, 40(1): 16-22.
[2] Zhao Yun, Feng Guojun, Hu Xiangwei, Wumaierjiang·Kuerban , Li Pengbing, Li Cuimei, Akebota·Muheyati . Preliminary Report on Selection of Herbicide-Resistant Foxtail Millet Varieties Suitable for Planting in Kashgar, Xinjiang [J]. Crops, 2023, 39(3): 126-133.
[3] Shao Yang, Guo Yanping, Min Gengmei, Yang Xiaoming. Effects of Different Functional Herbicides on the Growth of Broad Bean and Field Weeds [J]. Crops, 2023, 39(3): 254-259.
[4] Yang Shiqi, Chen Liming, Zhou Yanzhi, Tan Xueming, Zeng Yongjun, Shi Qinghua, Pan Xiaohua, Zeng Yanhua. Effects of Weeds Control on the Yield and Quality of Double- Cropping Direct-Seeded High-Quality Late Indica Rice [J]. Crops, 2023, 39(2): 121-125.
[5] Li Zhihua, Mu Tingting, Li Aijun. Breeding and Heterosis Analysis of Two Line Parents of Foxtail Millet Hybrids with Similar Growth Process [J]. Crops, 2022, 38(6): 75-81.
[6] Dong Yang. Study on the Physiological Response of Broomcorn Millet to Different Herbicides [J]. Crops, 2022, 38(5): 255-260.
[7] Li Binghua, Wang Guiqi, Shi Zhigang, Liu Xiaomin, Xu Xian, Zhao Bochui, Cheng Ruhong. Sensitivity of Foxtail Millets (Setaria italica L.) and Weeds to Cyhalofop-Butyl [J]. Crops, 2022, 38(4): 262-266.
[8] Li Huixia, Liu Hong, Wang Yuwen, Tian Gang, Liu Xin, Zheng Zhiyin. Study on the Technique of Removing False Hybrids from Foxtail Millet Herbicide-Resistant Hybrids [J]. Crops, 2021, 37(6): 72-77.
[9] Wang Furong, Zhang Jianxue, Guo Minjiang, Zhang Yahong, Fan Tiping, Wang Yahong, Zhang Yan, Pei Guoping, Lei Jianming. Effects of Post-Emergence Herbicide Spraying at Different Stages on Weed Control, and Yield and Quality of Winter Rapeseed [J]. Crops, 2020, 36(5): 204-208.
[10] Shaoguang Liu,Xiatong Zhao,Xi’e Song,Xiangyang Yuan,Shuqi Dong,Meijun Guo,Pingyi Guo. Effects of Intermembrane Spraying Pre-Germination Herbicide on the Safety of Millet and Weed Control [J]. Crops, 2019, 35(2): 173-178.
[11] Yajun Liu,Fengli Chu,Wenjing Wang,Qiguo Hu,Aimei Yang. Effects of Different Supporting Cultivation Measures on the Yield and Weeds Control of Sweet Potato cv. Shangshu 9 [J]. Crops, 2019, 35(2): 179-184.
[12] Li Chunhong,Lu Xianglong,Zhang Peitong,Su Yanjing,Wang Yiming,Guo Wenqi,Yin Jianmei,Han Xiaoyong,Wang Li,Huo Enjie. Screening Herbicides to Control Weeds for Sweet Sorghum [J]. Crops, 2018, 34(6): 158-161.
[13] Zhang Jianhua,Guo Ruifeng,Cao Changlin,Fan Na,Jiang Baiyang,Li Guang,Shi Lijuan,Peng Zhidong,Bai Wenbin. Study on Effect and Safety of Controlling Weed in Sorghum Field by Several Stem and Leaf Treatment Herbicide [J]. Crops, 2018, 34(5): 162-166.
[14] Zhao Cunhu,Kong Qingquan,Chen Wenjin,He Xiaoyong,Tian Xiaoyan. Screening of Postemergence Herbicides in the Broad Bean Field [J]. Crops, 2018, 34(5): 167-172.
[15] Jianguang Liu,Guiyuan Zhao,Junli Zhao,Zhao Geng,Yongqiang Wang,Hanshuang Zhang. Progress in the Structure, Expression and Function of Plant Carboxylesterases [J]. Crops, 2018, 34(3): 32-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!