Crops ›› 2023, Vol. 39 ›› Issue (2): 121-125.doi: 10.16035/j.issn.1001-7283.2023.02.017

Previous Articles     Next Articles

Effects of Weeds Control on the Yield and Quality of Double- Cropping Direct-Seeded High-Quality Late Indica Rice

Yang Shiqi1(), Chen Liming1, Zhou Yanzhi1,2, Tan Xueming1, Zeng Yongjun1, Shi Qinghua1, Pan Xiaohua1, Zeng Yanhua1()   

  1. 1Jiangxi Agricultural University/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, Jiangxi, China
    2Jiangxi Xinruifeng Biochemical Co., Ltd., Ji’an 331300, Jiangxi, China
  • Received:2021-11-12 Revised:2021-12-23 Online:2023-04-15 Published:2023-04-11

Abstract:

In order to investigate the effects of weeds control on the yield formation and quality of double- cropping direct-seeded high-quality late indica rice, high-quality inbred rice Meixiangzhan 2 (MXZ2) and high- quality hybrid rice Taiyou 871 (TY871) were used as materials, the field experiment with two treatments of chemical herbicide weeding (CW) and non-weeding (NW) were conducted. Compared with NW treatment, the grain yields of MXZ2 and TY871 under CW treatment increased by 75.71% and 76.00%, respectively, mainly due to the significant increase in the effective panicles and the spikelets per panicle. Compared with NW treatment, CW treatment could generally improve the processing quality and appearance quality of direct-seeded rice, and the gel consistency significantly reduced by 7.65% and 8.03%, respectively. CW treatment significantly increased the starch peak viscosity, hot viscosity, breakdown value and final viscosity of direct-seeded late rice, decreased the setback value, and improved the palatability of cooked rice. However, NW treatment significantly reduced the consistence of MXZ2, and did not differ on the chalkiness grain rate, amylose content and protein content. In all, spraying chemical herbicides for weed control significantly increased the yield of direct-seeded high-quality late rice, and it could significantly improve the processing quality of direct-seeded high-quality late rice, while reduced the chalkiness and gel consistency of rice. In addition, chemical weed control significantly affected the values of rice starch RVA profiles, which was beneficial to the improvement on cooking and eating quality.

Key words: Direct-seeded late indica rice, Herbicides spraying, Weeds, Yield, Grain quality

Fig.1

Weed control efficiency of different herbicides"

Table 1

Effects of weed treatments on the yield and its components of direct-seeded rice"

品种
Variety
处理
Treatment
有效穗数
Effective panicle number (×104/hm2)
穗粒数
Spikelet number per panicle
结实率
Seed-setting rate (%)
千粒重
1000-grain weight (g)
产量
Yield (t/hm2)
MXZ2 NW 292.1±6.1c 90.8±6.1c 89.3±1.1a 19.7±1.2b 4.24±0.08d
CW 376.2±12.1a 121.9±5.4b 79.9±1.0b 20.0±0.7b 7.45±0.05b
TY871 NW 271.4±12.2cd 116.9±2.3b 90.1±1.7a 25.1±0.2a 4.50±0.22c
CW 341.1±9.6ab 133.7±5.5a 72.8±0.9c 25.7±0.4a 7.92±0.08a

Table 2

Effects of weed treatment on main quality traits of direct-seeded rice"

品种
Variety
处理
Treatment
加工品质
Industrial quality
外观品质
Appearance quality
蒸煮食味品质
Cooking and eating quality
营养品质
Nutritional quality
糙米率
Brown rice
rate (%)
精米率
Milled rice
rate (%)
整精米率
Head rice
rate (%)
垩白粒率
Chalkiness
grain rate (%)
垩白度
Chalkiness
degree (%)
胶稠度
Gel consistency
(mm)
直链淀粉含量
Amylose
content (%)
蛋白质含量
Protein
content (%)
MXZ2 NW 76.0±0.7d 69.9±0.6b 57.3±2.0b 9.0±1.0bc 3.2±0.2a 69.3±1.2a 14.6±0.2a 7.5±0.2a
CW 79.3±0.4b 72.2±0.6a 62.7±1.2a 8.7±1.2c 2.9±0.2a 64.0±2.0b 15.0±0.7a 7.8±0.3a
TY871 NW 78.3±0.6c 66.3±0.5c 57.2±1.9b 11.7±1.5a 3.0±0.2a 71.3±1.2a 14.3±0.5b 7.4±0.6a
CW 80.6±0.3a 70.5±0.8b 62.5±0.7a 11.3±0.6b 2.7±0.3a 66.0±0.4b 14.2±0.1b 7.8±0.2a

Table 3

Effects of different treatments on the rapid viscosity analyzer (RVA) profiles of direct-seeded rice"

品种
Variety
处理
Treatment
峰值黏度
Peak
viscosity (cP)
热浆黏度
Hot viscosity
(cP)
崩解值
Breakdown
(cP)
最终黏度
Final
viscosity (cP)
消减值
Setback
(cP)
回复值
Consistence
(cP)
糊化时间
Peak time
(min)
糊化温度
Pasting
temperature (℃)
MXZ2 NW 3148.3±10.2c 1640.7±19.0b 1487.0±24.9c 2961.7±24.4c -56.0±12.5a 1321.0±6.1b 6.3±0.1b 86.4±0.9ab
CW 3361.7±29.2a 1754.3±24.4a 1759.7±25.5a 3172.0±20.0a -421.7±19.5c 1451.0±26.2a 6.1±0.1b 85.4±0.5b
TY871 NW 3090.7±22.8d 1585.7±12.6c 1414.7±41.6c 2896.7±12.6c -43.3±13.4a 1311.0±0.0b 6.3±0.1a 87.7±0.4a
CW 3300.3±27.7b 1658.3±12.0b 1639.0±30.2b 3047.7±60.7b -206.0±21.7b 1378.3±89.5ab 6.2±0.1b 86.9±0.9ab
[1] 曾雄生. 直播稻的历史研究. 中国农史, 2005(2):3-16.
[2] 邹应斌. 亚洲直播稻栽培的研究与应用. 作物研究, 2004(3):133-136.
[3] Sansen K, Wongboon W, Jairin J, et al. Farmer-participatory evaluation of mechanized dry direct-seeding technology for rice in northeastern Thailand. Plant Production Science, 2019, 22(1):46-53.
doi: 10.1080/1343943X.2018.1557530
[4] 马景, 刘媛, 李健荣, 等. 保墒旱直播稻田不同除草剂复配组合减量效果初报. 农业科学研究, 2021, 42(1):84-87.
[5] 欧阳萧晗, 董立尧, 张洋洋, 等. 4种助剂对3种水稻田常用除草剂减量增效作用. 杂草学报, 2021, 39(1):67-74.
[6] 张心明, 杨海燕, 周丽花. 不同药剂对直播稻田杂草的防效和安全性研究. 现代农业科技, 2020(14):86-87.
[7] 李庚, 赵怀斌, 赵长山. 不同除草剂施用量和施用时间对水稻产量及株高的影响. 中国农学会耕作制度分会2018年度学术年会论文摘要集, 2018:1.
[8] 范其新, 韩仁长, 蒙大庆, 等. 7种除草剂对直播油菜田间杂草防效及油菜生长的影响. 江西农业学报, 2013, 25(8):80-82,92.
[9] 朱祥民, 王士奎. 水稻烂秧病防治药剂筛选及应用. 农药, 2021, 60(6):455-457.
[10] 张自常, 谷涛, 李永丰, 等. 10%唑·氰氟+480g/L灭草松对旱直播稻田杂草防除和水稻产量的影响. 杂草学报, 2019, 37(4):50-55.
[11] 马军韬, 李文华, 张国民, 等. 黑龙江省水直播田杂草药剂系统防控技术. 中国稻米, 2021, 27(3):105-110.
doi: 10.3969/j.issn.1006-8082.2021.03.022
[12] 傅宇航, 马慧, 李娟, 等. 戊唑醇与嘧菌酯复配对稻瘟病和水稻纹枯病的联合毒力及田间防效. 中国农学通报, 2020, 36(36):113-117.
doi: 10.11924/j.issn.1000-6850.casb20200100020
[13] 李洪林, 宋伟, 王小龙, 等. 5种复配药剂对水稻纹枯病防治效果研究. 现代农药, 2018, 17(4):44-46,49.
[14] 钮敏华, 浦杏琴, 李国平, 等. 三种新型复配药剂防治水稻纹枯病的药效分析. 上海农业科技, 2016(4):111-112.
[15] 彭碧琳, 胡香玉, 钟旭华, 等. 华南双季直播稻品种筛选及其产量形成特征研究. 中国稻米, 2019, 25(5):47-52.
doi: 10.3969/j.issn.1006-8082.2019.05.010
[16] 吴培. 施氮量和直播密度互作对优质食味水稻产量和品质的影响. 扬州:扬州大学, 2019.
[17] 邓安凤, 杨从党, 陈清华, 等. 不同施肥方式对不同密度下直播稻的产量及群体光合物质生产的影响. 中国稻米, 2017, 23(4):123-129.
[18] 霍中洋, 姚义, 张洪程, 等. 不同生育期温光条件对直播稻产量的影响. 核农学报, 2012, 26(7):1043-1052.
doi: 10.11869/hnxb.2012.07.1043
[19] 田志慧, 陆俊尧, 袁国徽, 等. 千金子与异型莎草对直播水稻产量的影响及其生态经济阈值研究. 中国生态农业学报(中英文), 2020, 28(3):328-336.
[20] 乐富海, 周翔俊. 高秆杂草对直播晚稻产量的影响. 杂草科学, 1991(1):4-5.
[21] 王晓琳, 张晓昉, 李可, 等. 不同密度杂草稻胁迫对栽培稻光合作用及生理特性的影响. 华北农学报, 2016, 31(1):141-146.
doi: 10.7668/hbnxb.2016.01.023
[22] 王会民, 欧阳由男, 刘法谋, 等. 株型对水稻光能利用效率影响的研究进展. 中国稻米, 2010, 16(5):12-15.
[23] 孙成明, 苏祖芳, 许乃霞, 等. 水稻有效分蘖叶龄期的株型特征及其与产量关系初探. 江苏农业研究, 2000(3):10-15.
[24] 梁开明, 李晓娟, 钟旭华, 等. 拔节期光强对水稻基部节间长度的影响. 中国稻米, 2017, 23(2):32-37.
doi: 10.3969/j.issn.1006-8082.2017.02.008
[25] 赵春芳, 岳红亮, 黄双杰, 等. 南粳系列水稻品种的食味品质与稻米理化特性. 中国农业科学, 2019, 52(5):909-920.
doi: 10.3864/j.issn.0578-1752.2019.05.012
[26] 宋宁垣, 郭凯, 赵全志, 等. 河南沿黄稻区直播稻与常规优质稻稻米品质比较分析. 中国农学通报, 2018, 34(22):1-9.
doi: 10.11924/j.issn.1000-6850.casb18030020
[27] 韩笑. 增温、高温对不同种植方式下水稻产量、品质及其形成的影响. 扬州:扬州大学, 2020.
[28] 谢成林, 唐建鹏, 姚义, 等. 栽培措施对稻米品质影响的研究进展. 中国稻米, 2017, 23(6):13-18,22.
doi: 10.3969/j.issn.1006-8082.2017.06.003
[29] 郁延坤. 7种除草剂对水直播水稻安全性影响的研究. 哈尔滨:东北农业大学, 2017.
[30] 闫冬. 五氟磺草胺和吡嘧磺隆混用配方筛选对水稻田安全性的影响. 哈尔滨:东北农业大学, 2018.
[31] Gibson K D, Foin T C, Hill J E. The relative importance of root and shoot competition between water-seeded rice and Echinochloa phyllopogon. Weed Research, 1999, 39(3):181-190.
doi: 10.1046/j.1365-3180.1999.00135.x
[32] 李光宁, 程文超, 胡荣娟, 等. 0.136%赤·吲乙·芸薹可湿性粉剂与3%氯氟吡啶酯乳油混用对无芒稗防治效果及生理生化的影响. 杂草学报, 2021, 39(2):47-57.
[33] 倪日群, 林华. 不同氮肥施用量对泰两优217稻谷产量和稻米品质的影响. 杂交水稻, 2022, 37(3):126-129.
[34] 李静. 生态条件和栽培密度对水稻群体特征、产量和品质的影响. 成都:四川农业大学, 2013.
[35] 舒庆尧, 吴殿星, 夏英武, 等. 稻米淀粉RVA谱特征与食用品质的关系. 中国农业科学, 1998, 31(3):25-26,28-29.
[36] 张小明, 石春海, 富田桂. 粳稻米淀粉特性与食味间的相关性分析. 中国水稻科学, 2002, 16(2):157-161.
[37] 吴殿星, 舒庆尧, 夏英武. 利用RVA谱快速鉴别不同表观直链淀粉含量早籼稻的淀粉粘滞特性. 中国水稻科学, 2001, 15(1):58-60.
[38] 朱振华, 金基永, 袁平荣, 等. 不同海拔条件下耐冷性粳稻品种的稻米淀粉RVA谱特性. 中国水稻科学, 2010, 24(2):151-156.
doi: 10.3969/j.issn.1001-7216.2010.02.08
[39] 郑英杰, 于亚辉, 李振宇, 等. 北方两系杂交粳稻淀粉RVA谱特征与食味品质的关系. 中国稻米, 2018, 24(3):49-54.
doi: 10.3969/j.issn.1006-8082.2018.03.010
[1] Liu Yu, Cao Jialin, Xiao Zhengwu, Zhang Mingyu, Chen Jia’na, Cao Fangbo, Huang Min. Effects of Nitrogen Application Rates on Yield and Nitrogen Use Efficiency of Super Hybrid Rice Y-liangyou 900 [J]. Crops, 2023, 39(2): 126-130.
[2] Ma Ruiqi, Wang Demei, Tao Zhiqiang, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Chang Xuhong. Effects of Topdressing Nitrogen Amount on Yield and Agronomic Traits of Different Gluten Type Wheat Cultivars [J]. Crops, 2023, 39(2): 131-137.
[3] Cui Shuna, Wang Ye, Lu Yuqing, Pan Jinbao, Zhang Qiuzhi. Correlation and Path Analysis of Three Ear Leaves on Yield in Maize [J]. Crops, 2023, 39(2): 201-206.
[4] Xu Dong, He Jianqing, Zhang Gejie, Liu Haixin, Ma Jinyu, Wang Siyuan. Effects of Fertilizer Combined with Garden Waste Compost on Yield, Quality of Highland Barley and Soil Fertility [J]. Crops, 2023, 39(2): 214-221.
[5] Ma Jiyu, Wang Shuang, Li Yun, Guo Zhenqing, Wang Jian, Lin Xiaohu, Han Yucui. Effects of Planting Density on Agronomic Characteristics and Yield of Foxtail Millet [J]. Crops, 2023, 39(2): 222-228.
[6] Xiao Jibing, Liu Zhi, Kong Fanxin, Xin Zongxu, Wu Hongsheng. Analysis of Agronomic Traits and Yield Stability of Sorghum Varieties Based on GGE Biplot [J]. Crops, 2023, 39(2): 36-45.
[7] Gu Yibiao, Yan Jiaqian, Xue Zhangyi, Shu Chenchen, Zhang Weiyang, Zhang Hao, Liu Lijun, Wang Zhiqin, Zhou Zhenling, Xu Dayong, Yang Jianchang, Gu Junfei. Different Responses of Roots of Rice Varieties to Salt Stress and the Underlying Mechanisms [J]. Crops, 2023, 39(2): 67-76.
[8] Tang Zhongjie, Xie Deyi, Xu Shouming, Nie Lihong, Lü Shuping, Wang Mingkun. Changes of Insect Resistance and Its Correlation Analysis with Yield Traits in Transgenic Bt Cotton from 2005 to 2020 [J]. Crops, 2023, 39(2): 77-82.
[9] Yuan Shuai, Su Yuting, Chen Pingping, Yi Zhenxie. Effects of Nitrogen Management on Yield Formation and Rice Quality of Double Cropping Hybrid Rice in Southern Hunan [J]. Crops, 2023, 39(2): 91-99.
[10] Xia Yuying, Wang Zhijun, Li Hongyu, Hu Chuanjun, Lü Yandong, Zhao Haicheng, Zheng Guiping. Effects of Seedling Raising Methods on Seedling Quality, Yield and Quality of Rice in Cold Region [J]. Crops, 2023, 39(1): 103-108.
[11] Gao Wei, Hao Qingting, Zhang Zeyan, Wang Qian, Yan Hubin, Zhu Huijun, Zhao Xueying, Zhang Yaowen. Effects of Nitrogen and Phosphorus Application on Yield, Root Morphology and Photosynthetic Characteristics of Adzuki Bean [J]. Crops, 2023, 39(1): 109-114.
[12] Wang Yujiao, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Shi Shubing, Zhao Guangcai. Effects of Sowing Methods on Yield and Quality of Different Varieties of Wheat [J]. Crops, 2023, 39(1): 122-128.
[13] Zhao Jingyun, Lü Xinyun, Liu Xiaorong, Ren Haihong, Ren Xiaojun, Ma Junkui. Effects of Strip Compound Intercropping under Young Walnut Forest on Soybean Growth and Yield [J]. Crops, 2023, 39(1): 136-142.
[14] Zhai Caijiao, Zhang Jiao, Cui Shiyou, Chen Pengjun, Han Jijun. Effects of Slow/Controlled Release Fertilizer Application on Growth, Yield and Quality of Rice under Salt Stress [J]. Crops, 2023, 39(1): 143-151.
[15] Li Wenshan, Zhang Junyao, Tang Jianghua, Xu Wenxiu, Xu Qinghua. Effects of Different Doses of AFD on Growth and Yield of Cotton [J]. Crops, 2023, 39(1): 158-162.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!