Crops ›› 2016, Vol. 32 ›› Issue (1): 162-168.doi: 10.16035/j.issn.1001-7283.2016.01.030

Previous Articles    

The Use of Vegetation Supply Water Index (VSWI) based on Different Vegetation Indices in the Spring Drought Monitoring in Henan Province

Li Qi1,2,Sun Xiaoyu1,2,Wang Lianxi1,2,Miao Miao1,2,Wu Dongli3   

  1. 1 Jiangsu Key Laboratory of Agricultural Meteorology,Nanjing 210044,Jiangsu,China
    2 College of Applied Meteorology,Nanjing University of Information Science & Technology,Nanjing 210044,Jiangsu,China;
    3 Meteorological Observation Centre of China Meteorological Administration,Beijing 100081,China
  • Received:2015-11-13 Revised:2015-12-15 Online:2016-02-15 Published:2018-08-26

Abstract:

As a common natural disaster, drought seriously threatens the agricultural production, especially the spring drought frequently happens in Henan province. This paper presented a case study of different indices of Vegetation Supply Water Index (VSWI) in Henan drought monitoring in spring. NDVI, EVI and MSAVI were selected to build different VSWI models, which were analyzed the development trend of spring drought. The relationship of three indices and long time series of precipitation were discussed on the meteorological stations. The results showed that,in some extent, there was a positive correlation between three indices and the soil moisture. VSWIE and VSWIM were more suitable for monitoring surface soil moisture. Overall speaking, VSWIE was the best for monitoring spring drought. Furthermore, by comparing the spring precipitation anomaly percentage in Henan province, we found that the year of 2000 was the most severe spring drought year of the recent 30 years. Therefore, VSWI model based on EVI was suitable to monitor the spring drought in Henan province.

Key words: Vegetation indices, Vegetation Supply Water Index (VSWI), Spring drought monitoring, Remote sensing application

Fig.1

The changes of NDVI, EVI and MSAVI over time"

Table 1

Correlation between VSWIN, VSWIE and VSWIM(2012)model and soil moisture of different depth"

监测时段
Monitoring time
VSWIN与RSM相关系数
VSWIN with RSM
correlation coefficient
VSWIE与RSM相关系数
VSWIE with RSM
correlation coefficient
VSWIM与RSM相关系数
VSWIM with RSM
correlation coefficient
样本量
Sample
size
10cm 20cm 10cm 20cm 10cm 20cm
3月5日-3月12日 0.1801 0.1017 0.3295* 0.211 0.3382* 0.2203 14
3月13日-3月20日 - - - - - - -
3月21日-3月28日 0.0120 0.1153 0.2983* 0.2504 0.3033* 0.2481 15
3月29日-4月5日 0.0420 0.1007 0.1578 0.1749 0.1619 0.1755 15
4月6日-4月13日 0.0008 0.2086 0.0586 0.3369* 0.0436 0.3386* 15
4月14日-4月21日 0.0054 0.0191 0.0521 0.1316 0.0238 0.0642 12
4月22日-4月29日 0.0120 0.0558 0.0180 0.0944 0.0173 0.0195 15
4月30日-5月7日 -0.0035 0.0045 0.0006 0.0231 0.0004 0.0194 15
5月8日-5月15日 0.0028 -0.0131 -0.0014 0.0009 -0.0020 -0.0001 15
5月16日-5月23日 -0.0178 -0.0069 -0.0310 -0.0168 -0.0339 -0.0173 15
5月24日-5月31日 -0.0011 -0.0016 -0.0190 -0.0422 -0.0259 -0.0443 15

Table 2

Sub regional spring precipitation anomaly percentage of 2000 and 2001 %"

年份
Year
豫北Yubei 豫中Yuzhong 豫东Yudong 豫西
Yuxi
豫南Yunan
2000 -63.86 -69.52 -70.87 -60.32 -62.95
2001 -88.80 -86.78 -86.64 -48.91 -61.83

Fig.2

Typical station VSWIE and corresponding time accumulated precipitation of eight days in the spring of 2012"

Table 3

Spring drought remote sensing monitoring statistics of Henan province in 2000 (pixel percentage ) %"

监测时段
Monitoring time
干旱等级 Drought grade
适宜 Suitable 轻旱 Light drought 中旱 Medium drought 重旱 Severe drought
3月5日-3月12日 11.29 19.36 32.19 37.13
3月13日-3月20日 8.45 16.26 20.15 55.12
3月21日-3月28日 9.86 22.35 18.81 48.96
3月29日-4月5日 4.65 20.27 22.17 52.88
4月6日-4月13日 5.96 15.36 21.27 57.40
4月14日-4月21日 14.82 25.12 20.53 39.52
4月22日-4月29日 10.42 30.82 28.86 29.90
4月30日-5月7日 13.07 30.81 25.03 31.09
5月8日-5月15日 16.17 28.33 21.89 33.61
5月16日-5月23日 7.73 16.04 18.17 58.06
[1] 王宗敏, 杨海波, 计淇才 , 等. 基于MODIS的河南省遥感干旱监测研究. 水土保持通报, 2012,32(1):139-143.
[2] 赵广才, 常旭虹, 王德梅 , 等. 农业隐性灾害对小麦生产的影响与对策.作物杂志, 2011(5):1-7.
[3] 朱业玉, 潘攀, 匡晓燕 , 等. 河南省干旱灾害的变化特征和成因分析. 中国农业气象, 2011,32(2):311-316.
[4] 竹磊磊, 常军, 张善强 , 等. 河南夏季干旱气候特征分析. 气象与环境科学, 2012,35(1):49-55.
[5] 房稳静, 林文全, 赵龙 , 等. 基于土壤墒情的河南省冬小麦干旱灾害特点及评估//中国气象学会.S10气象与现代农业发展.北京: 同方知网数字出版技术股份有限公司, 2012.
[6] 李树岩, 刘荣花, 师丽魁 , 等. 基于CI指数的河南省近40a干旱特征分析. 干旱气象, 2009,27(2):97-102.
[7] 李谢辉, 张超, 姚佳林 . 河南省干旱的时空分布规律与趋势分析. 西北师范大学学报(自然科学版), 2015,51(2):85-91.
[8] 孙睿, 唐侥 . 基于气象和遥感数据的河南省干旱特征分析. 自然资源学报, 2013,28(4):646-652.
doi: 10.11849/zrzyxb.2013.04.011
[9] 沙莎, 郭铌, 李耀辉 , 等. 植被状态指数VCI与几种气象干旱指数的对比—以河南省为例. 冰川冻土, 2013,35(4):990-998.
doi: 10.7522/j.issn.1000-0240.2013.0111
[10] 张洁, 武建军, 周磊 , 等. 基于MODIS数据的农业干旱监测方法对比分析. 遥感信息, 2012,27(5):48-54.
[11] 杨世琦, 易佳, 罗孽孽 , 等. 2006年重庆特大干旱期间的遥感监测应用研究. 中国农学通报, 2010,26(23):325-330.
[12] 贺俊杰, 王英舜, 李云鹏 , 等. 利用EOS/MODIS植被供水指数监测锡林郭勒地区土壤湿度. 中国农业气象, 2013,34(2):243-248.
doi: 10.3969/j.issn.1000-6362.2013.02.018
[13] Goetz S J . Multi-sensor analysis of NDVI,surface temperature and biophysical variables at a mixed grassed land site. International Journal of Remote Sensing, 2010,18(1):71-94.
[14] 杨峰, 李建龙, 钱育蓉 , 等. 天山北坡典型退化草地植被覆盖度监测模型构建与评价. 自然资源学报, 2012,27(8):1341-1347.
[15] 杨波, 马苏, 王彬武 , 等. 基于MODIS的湖南省农业干旱监测模型. 自然资源学报, 2012,27(10):1788-1796.
[16] 易佳 . 基于EOS-MODIS的重庆市干旱遥感监测技术研究. 重庆:西南大学, 2010.
[17] 姜亚珍, 张瑜洁, 孙琛 , 等. 河北省土壤干湿状况遥感监测指数比较. 中国农业气象, 2014,35(6):675-681.
doi: 10.3969/j.issn.1000-6362.2014.06.011
[18] Wan Z, Wang P, Li X . Using MODIS land surface temperature and normalized difference vegetation index products for monitoring drought in the southern great plains,USA. International Journal of Remote Sensing, 2004,25(1):61-72.
doi: 10.1080/0143116031000115328
[19] Song Y K, Njoroge J B, Yukihiro M . Drought impact assessment from monitoring the seasonality of vegetation condition using long-term time-series satellite images:a case study of Mt. Kenya region. Environmental Monitoring and Assessment, 2013,185(5):4117-4124.
doi: 10.1007/s10661-012-2854-z
[20] 杨世琦, 高阳, 徐永进 . 基于植被供水指数的重庆夏季干旱状况评估//中国气象学会.创新驱动发展提高气象灾害防御能力——S2灾害天气监测、分析与预报.北京: 同方知网数字出版技术股份有限公司, 2013.
[21] 耿婷, 付伟, 陈群 , 等. 近20年河南省冬小麦生育期气候资源的时空变化及其适应性研究. 麦类作物学报, 2013,33(4):652-661.
doi: 10.7606/j.issn.1009-1041.2013.04.006
[22] 包欣 . 基于多源数据的旱情监测方法研究——以河南示范区为例. 淮南:安徽理工大学, 2013.
[23] 李华朋, 张树清, 高自强 , 等. MODIS植被指数监测农业干旱的适宜性评价. 光谱学与光谱分析, 2013,33(3):756-761.
[24] 房世波, 齐月, 韩国军 , 等. 1961-2010年中国主要麦区冬春气象干旱趋势及其可能影响. 中国农业科学, 2014,47(9):1754-1763.
doi: 10.3864/j.issn.0578-1752.2014.09.010
[25] 伏毅, 戴媛, 谭晓荣 , 等. 干旱对小麦幼苗脂类和蛋白质氧化损伤的影响.作物杂志, 2010(3):45-50.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .