Crops ›› 2018, Vol. 34 ›› Issue (1): 9-15.doi: 10.16035/j.issn.1001-7283.2018.01.002

Previous Articles     Next Articles

Application of RNAi in Crop Breeding and Its Safety Assessment

Jiao Yue1,Fu Wei2,Zhai Yong1   

  1. 1 Development Center of Science and Technology, Ministry of Agriculture, Beijing 100176, China
    2 Chinese Academy of Inspection and Quarantine, Beijing 100176, China
  • Received:2017-09-28 Revised:2017-12-14 Online:2018-02-20 Published:2018-08-24

Abstract:

RNA interference (RNAi) technology is widely used for gene function research. In recent years, RNAi-based transgenic technology is considered as a new breeding method with application potentials. RNAi-based transgenic crops with insect resistance traits have been developed successfully, indicating that the commercial application is possible. How to monitor the RNAi-based transgenic crops has become a new problem meanwhile. This paper briefly introduced the application of RNAi in crop breeding and summarized the potential risks of RNAi technology. The advantages and disadvantages compared with conventional crop breeding technologies or transgenic techniques were also discussed. The regulatory models and related policies of RNAi-based transgenic crops in the world’s major countries were elaborated. Finally, the regulatory problems of RNAi-based transgenic crops were summarized and the suggestions on the regulation in China were made.

Key words: RNAi technology, Transgenic crops, Safety assessment

[1] James C . Global status of commercialized biotech/GM crops:2016. International Service for the Acquisition of Agri-biotech Applications (ISAAA) Brief No. 52. ISAAA:Ithaca, NY, 2016.
[2] Wei F, Zhu P, Wang C , et al. A highly sensitive and specific method for the screening detection of genetically modified organisms based on digital PCR without pretreatment. Scientific Reports, 2015,5:12715.
doi: 10.1038/srep12715
[3] Shew A M, Danforth D M, Nalley L L , et al. New innovations in agricultural biotech:consumer acceptance of topical RNAi in rice production. Food Control, 2017,81:189-195.
doi: 10.1016/j.foodcont.2017.05.047
[4] 张恭, 刘立峰, 马峙英 . RNA干扰及其植物抗病毒应用. 中国农学通报, 2007,23(1):42-45.
doi: 10.3969/j.issn.1000-6850.2007.01.011
[5] 燕飞, 成卓敏 . RNA干扰与植物抗病毒. 生物技术通报, 2005(4):1-4.
[6] 黎娟华, 孙海彦, 赵平娟 , 等. 植物介导的RNA干扰南方根结线虫Mi-eft2基因的转基因番茄的研究. 基因组学与应用生物学, 2015,34(3):587-592.
[7] 李猷 . 利用RNA干扰技术提高番茄抗TMV侵染能力的研究. 牡丹江:牡丹江师范学院, 2015.
[8] 任琴, 王亚军, 郭志鸿 , 等. 植物介导的RNA干扰引起马铃薯晚疫病菌基因的沉默. 作物学报, 2015,41(6):881-888.
doi: 10.3724/SP.J.1006.2015.00881
[9] Zhang J, Khan S A, Heckel D G , et al. Next-generation insect-resistant plants:RNAi-mediated crop protection. Trends in Biotechnology, 2017,35(9):871-882.
doi: 10.1038/ncomms15186 pmid: 28822598
[10] Darrington M, Dalmay T, Morrison N I , et al. Implementing the sterile insect technique with RNA interference-a review. Entomologia Experimentalis et Applicata, 2017,164:155-175.
doi: 10.1111/eea.12575
[11] 王伟伟, 刘妮, 陆沁 , 等. RNAi技术的最新研究进展. 生物技术通报, 2017,33(11):1-6.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0455
[12] 李丽文, 朱延明, 李杰 , 等. RNAi技术在植物功能基因组学中的研究进展. 东北农业大学学报, 2007,38(1):119-124.
doi: 10.3969/j.issn.1005-9369.2007.01.025
[13] 何康来, 王振营, 沈萍 . RNAi生物技术作物环境风险评估研究进展. 生物安全学报, 2014,23(4):238-247.
doi: 10.3969/j.issn.2095-1787.2014.04.003
[14] 焦悦, 梁晋刚, 翟勇 . 转基因作物安全评价研究进展. 作物杂志, 2016(5):1-7.
doi: 10.16035/j.issn.1001-7283.2016.05.001
[15] Montgomery M K, Xu S, Fire A . RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 1998,95(26):15502-15507.
doi: 10.1073/pnas.95.26.15502
[16] Elbashir S M, Lendeckel W, Tuschl T T . RNA interference is mediated by 21- and 22- nucleotide RNAs. Genes & Development, 2001,15:188-200.
[17] 代玉华, 王锡锋, 李莉 , 等. 一种适合水稻农杆菌转化的RNAi载体的构建和潮霉素对水稻转化的影响. 植物保护, 2007,33(2):37-40.
doi: 10.3969/j.issn.0529-1542.2007.02.009
[18] 雷阳 . 利用RNAi技术和农杆菌共转化法创制抗病毒转基因水稻. 北京:中国农业科学院植物保护研究所, 2013.
[19] 王娟飞, 陈志森, 陈军 . 三角褐指藻PPDK基因RNAi载体的构建和基因枪转化. 厦门大学学报, 2010,49(3):400-405.
[20] Lee W S, Rudd J J, Kanyuka K . Virus induced gene silencing (VIGS) for functional analysis of wheat genes involved in Zymoseptoria tritici susceptibility and resistance. Fungal Genetics and Biology, 2015,79:84-88.
doi: 10.1016/j.fgb.2015.04.006
[21] 魏强, 王莉, 崔林虎 . RNA干扰技术在育种方面的应用. 中国种业, 2016(7):23-25.
[22] 苏建辉 . RNAi技术培育抗ToMV加工番茄研究. 石河子:石河子大学, 2011.
doi: 10.7666/d.d178190
[23] 张余洋, 漆梅芳, 叶志彪 , 等. 番茄真核翻译起始因子4E基因RNA干涉及其抗病毒特性研究. 自然科学进展, 2008,18(5):514-522.
doi: 10.3321/j.issn:1002-008X.2008.05.005
[24] Pinto Y M, Kok R A, Baulcombe D C . Resistance to rice yellow mottle virus (RYMV) in cultivated African rice varieties containing RYMV transgenes. Nature Biotechnology, 1999,17:702-707.
doi: 10.1038/10917
[25] 万群 . RNAi介导的LCY基因沉默对番茄果实中番茄红素含量的影响. 重庆:西南大学, 2007.
doi: 10.7666/d.y1075435
[26] 柴晓杰, 王丕武, 关淑艳 , 等. 应用RNA干扰技术降低玉米支链淀粉含量. 植物生理与分子生物学学报, 2005,31(6):625-630.
doi: 10.3321/j.issn:1671-3877.2005.06.010
[27] 马建 . 大豆脂肪氧化酶基因RNAi表达载体的构建及表达调控的研究. 长春:吉林农业大学, 2008.
doi: 10.7666/d.y1512076
[28] Liu Q, Wu M, Zhang B , et al. Genetic enhancement of palmitic acid accumulation in cotton seed oil through RNAi down-regulation of ghKAS2 encoding βketoacyl-ACP synthase II (KASII). Plant Biotechnology Journal, 2017,15(1):132-143.
doi: 10.1111/pbi.2017.15.issue-1
[29] Thakare D, Zhang J, Wing R A , et al. Aflatoxin-free transgenic maize using host-induced gene silencing. Science Advances, 2017,3(3):e1602382.
doi: 10.1126/sciadv.1602382
[30] 陈华民, 田芳, 吴茂森 , 等. RNAi转基因植物技术的应用及其潜在风险. 中国植物病理学会2011年学术年会论文集, 2011: 403-405.
[31] Baum J A, Bogaert T, Clinton W , et al. Control of coleopteran insect pests through RNA interference. Nature Biotechnology, 2007,25(11):1322-1326.
doi: 10.1038/nbt1359
[32] Saxena S, Jónsson Z O, Dutta A . Small RNAs with imperfect match to endogenous mRNA repress translation implications for off-target activity of small inhibitory RNA in mammalian cells. Journal of Biological Chemistry, 2003,278(45):44312-44319.
doi: 10.1074/jbc.M307089200
[33] 梁晋刚, 张正光 . 转基因作物种植对土壤生态系统影响的研究进展. 作物杂志, 2017(4):1-6.
[34] Keown H, O' Callaghan M,Greenfield L G . Decomposition of nucleic acids in soil. New Zealand Natural Sciences, 2004,29:13-19.
[35] Dubelman S, Fischer J, Zapata F , et al. Environmental fate of double-stranded RNA in agricultural soils. PLoS ONE, 2014,9(3):e93155.
doi: 10.1371/journal.pone.0093155 pmid: 3968063
[36] 陈华民, 田芳, 吴茂森 , 等. RNAi转基因植物技术的应用及其潜在风险. 中国植物病理学会2011年学术年会论文集, 2011.
[37] US Office of Science and Technology Policy . Coordinated framework for the regulation of biotechnology. Federal Register, 1986,51:23303-23350.
[38] EFSA. Guidance document of the scientific panel on genetically modified organisms for the risk assessment of genetically modified plants and derived food and feed. The EFSA Journal, 2004,99:1-94.
[39] 吴茂森, 陈华民, 何晨阳 , 等 . RNAi转基因植物的快速精确检测方法及其应用:中国, CN102373275 B. 2013-07-31.
[40] 杨菲 . RNAi转基因植物基于DNA的快速精确检测方法研究. 北京:中国农业科学院植物保护研究所, 2011.
[1] Yue Jiao,Jingang Liang,Yong Zhai. Progress in Safety Assessment of Genetically Modified Crops [J]. Crops, 2016, 32(5): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .