Crops ›› 2018, Vol. 34 ›› Issue (3): 51-56.doi: 10.16035/j.issn.1001-7283.2018.03.008

Previous Articles     Next Articles

Mutant Analysis on Quality Trait of Different Japonica Rice Progenies Induced by 60Co-γ Ray Irradiation

Zhang Lili,Zhao Yizhou,Li Xin,Mao Ting,Liu Yan,Zhang Zhan,Ni Shanjun,Liu Fucai   

  1. Liaoning Province Saline-Alkaline Land Utilization and Research Institute, Panjin 124010, Liaoning, China
  • Received:2017-12-13 Revised:2018-03-09 Online:2018-06-20 Published:2018-06-20

Abstract:

In this research, the rice quality trait variation of progenies induced by 60Co-γ ray irradiation was studied by treating dry seeds of the four japonica rice with 150Gy 60Co-γ rays. The results showed that quality trait after irradiation mutation occurred variation, with variation coefficient ranging from 3.43% to 35.60%. The magnitude of trait variation and the direction of segregation were related to genotypes. It was confirmed that irradiation mutation breeding can be a good alternative for breeding and quality improvement for japonica rice breeding practice. The differences of some quality traits between different progenies group were significant or extremely significant. The correlation between balance degress and adhesiveness of progenies material and parents had extremely significant correlation. It indicated that two parameters could predict the performance of the progenies induced by 60Co-γ ray irradiation. Correlation analysis showed that there was a significant or highly significant correlation between taste value and RVA profile characteristics, which provided the basis for evaluating rice quality in irradiation breeding.

Key words: 60Co-γ ray irradiation;, Japonica rice, Rice quality trait

Table 1

The tested cultivars and mutagenic progeny materials"

品种Cultivar 份数Number
盐粳753 Yanjing 753 15
盐粳228 Yanjing 228 20
桥科951 Qiaoke 951 16
盐粳939 Yanjing 939 13
合计Total 64

Table 2

The variation analysis of the rice cooking and eating quality trait in progeny induced by 60Co-γ ray irradiation"

品种Cultivar 食味值Taste value 硬度Hardness 黏度Adhesiveness 平衡度Balance degress 弹性Elastic
盐粳753 Yanjing 753 对照CK 70.91 6.28** 0.37 0.06 0.80
处理Treatment 71.23 5.31 0.41 0.08* 0.78
标准差SD 6.47 0.70 0.10 0.03 0.02
变异系数CV (%) 9.08 13.21 25.36 32.63 2.64
盐粳228 Yanjing 228 对照CK 70.68 5.11 0.60* 0.12 0.74
处理Treatment 69.29 5.04 0.54 0.12 0.76
标准差SD 5.08 1.22 0.10 0.04 0.03
变异系数CV (%) 7.33 24.15 18.90 34.47 4.01
桥科951 Qiaoke 951 对照CK 68.71 4.70 0.45 0.10 0.76
处理Treatment 69.31 5.67** 0.51 0.09 0.77
标准差SD 4.38 0.52 0.08 0.02 0.02
变异系数CV (%) 6.31 9.20 14.80 19.37 2.41
盐粳939 Yanjing 939 对照CK 67.79 6.78* 0.44 0.07 0.80
处理Treatment 68.19 5.77 0.47 0.09 0.77
标准差SD 4.92 1.54 0.11 0.05 0.04
变异系数CV (%) 7.22 26.70 24.63 55.91 4.67

Table 3

The variation analysis of the rice RVA profile characteristics in progeny induced by 60Co-γ ray irradiation RVU"

品种Cultivar 最高黏度PKV 热浆黏度HPV 冷胶黏度CPV 崩解值BDV 消减值SBV 回复值CSV
盐粳753 Yanjing 753 对照CK 407.58** 160.5 519.42 247.08** 111.83 358.92**
处理Treatment 378.30 194.82** 497.82 189.03 119.52 303.00
标准差SD 27.08 16.87 29.59 36.42 7.76 22.60
变异系数CV(%) 7.16 8.66 5.94 19.27 6.49 7.46
盐粳228 Yanjing 228 对照CK 413.50** 221.67** 537.17** 191.83 123.67 315.50
处理Treatment 391.43 187.56 485.44 203.93 119.55 307.25
标准差SD 23.34 26.93 116.87 27.82 7.13 76.58
变异系数CV(%) 5.96 14.36 24.07 13.64 5.96 24.92
桥科951 Qiaoke 951 对照CK 412.67 151.42 518.75 261.25** 106.08 367.33**
处理Treatment 393.08 176.00** 480.85 216.73 119.82* 315.85
标准差SD 41.40 16.77 128.96 50.30 13.66 92.00
变异系数CV(%) 10.53 9.53 26.82 23.20 11.40 29.13
盐粳939 Yanjing 939 对照CK 390.25 176.58 523.33 209.92 133.08* 346.75
处理Treatment 389.37 174.19 473.80 215.17 123.92 313.01
标准差SD 42.71 19.04 146.84 44.73 9.22 100.71
变异系数CV(%) 10.97 10.93 31.00 20.80 7.44 32.18

Table 4

The difference comparison of the rice quality characters in progeny induced by 60Co-γ ray irradiation"

指标Index 盐粳753 Yanjing 753 盐粳228 Yanjing 228 桥科951 Qiaoke 951 盐粳939 Yanjing 939
食味值Taste value 71.23aA 69.29aA 69.31aA 68.19aA
硬度Hardness 5.31aA 5.04aA 5.67aA 5.77aA
黏度Adhesiveness 0.41cB 0.54aA 0.51abA 0.47bcAB
平衡度Balance degress 0.08bA 0.12aA 0.09abA 0.09abA
弹性Elastic 0.78aA 0.76aA 0.77aA 0.77aA
最高黏度PKV (RVU) 378.30aA 391.43aA 393.08aA 389.37aA
热浆黏度HPV (RVU) 194.82aA 187.56abA 176.00bA 174.19bA
冷胶黏度CPV (RVU) 497.82aA 485.44aA 480.85aA 473.80aA
崩解值BDV (RVU) 189.03aA 203.93aA 216.73aA 215.17aA
消减值SBV (RVU) 119.52aA 119.55aA 119.82aA 123.92aA
回复值CSV (RVU) 303.00bB 307.25abAB 315.85aAB 313.01aA

Table 5

The rice quality characters correlation coefficient in parents and progeny"

食味值
Taste value
硬度
Hardness
黏度
Adhesiveness
平衡度
Balance degress
弹性
Elastic
最高黏度
PKV
热浆黏度
HPV
冷胶黏度
CPV
崩解值
BDV
消减值
SBV
回复值
CSV
0.146 0.077 0.419** 0.330** 0.192 0.020 0.137 0.061 -0.016 0.144 -0.003

Table 6

The rice quality characters correlation analysis of progeny induced by 60Co-γ ray irradiation"

指标
Index
食味值
Taste value
硬度
Hardness
黏度
Adhesiveness
平衡度
Balance degress
弹性
Elastic
最高黏度
PKV
热浆黏度
HPV
冷胶黏度
CPV
崩解值
BDV
消减值
SBV
硬度 -0.434**
黏度 -0.166 -0.147
平衡度 -0.400** -0.838** -0.565**
弹性 -0.056 -0.759** -0.131 -0.688**
最高黏度 -0.170 -0.168 -0.199 -0.278* 0.141
热浆黏度 -0.130 -0.058 -0.269* -0.096 0.005 -0.065
冷胶黏度 -0.097 -0.094 -0.243 -0.167 0.023 -0.458** -0.156
崩解值 -0.309** -0.087 -0.089 -0.428** 0.104 -0.791** -0.459** 0.096
消减值 -0.280* -0.275* -0.114 -0.063 0.081 -0.302* -0.291* 0.016 -0.444**
回复值 -0.259* -0.058 -0.039 -0.085 -0.106 -0.165 -0.433** 0.190 -0.265* 0.121
[1] 赵凌, 赵春芳, 周丽慧 , 等. 中国水稻生产现状与发展趋势. 江苏农业科学, 2015,43(10):105-107.
[2] 莫惠栋 . 我国稻米品质的改良. 中国农业科学, 1993,26(4):8-14.
[3] 李欣, 张蓉, 隋炯明 , 等. 稻米淀粉粘滞性谱特征的表现及其遗传. 中国水稻科学, 2004,18(5):384-390.
doi: 10.3321/j.issn:1001-7216.2004.05.002
[4] 舒庆尧, 吴殿星, 夏英武 , 等. 稻米淀粉RVA谱特征与食用品质的关系. 中国农业科学, 1998,31(3):25-29.
doi: 10.3321/j.issn:0578-1752.1998.03.005
[5] 隋炯明, 李欣, 严松 , 等. 稻米淀粉RVA谱特征与品质性状相关性研究. 中国农业科学, 2005,38(4):657-663.
[6] 贾良, 丁雪云, 王平荣 , 等. 稻米淀粉RVA谱特征及其与理化品质性状相关性的研究. 作物学报, 2008,34(5):790-794.
doi: 10.3724/SP.J.1006.2008.00790
[7] 段智英, 吴殿星, 沈圣泉 , 等. 辐照改良水稻淀粉特性的研究. 核农学报, 2003,17(4):249-254.
doi: 10.3969/j.issn.1000-8551.2003.04.002
[8] 焦桂爱, 胡培松, 唐绍清 , 等. 香稻品种RVA谱多样性研究. 核农学报, 2010,24(1):78-82.
[9] 刘路祥, 郭会军, 赵林姝 , 等. 植物诱发突变技术育种研究现状与展望. 核农学报, 2009,23(6):1001-1007.
[10] 斯琴图雅, 高德玉, 张玉宝 , 等. 我国水稻辐射诱变育种现状. 黑龙江科学, 2013,4(5):42-43,82.
doi: 10.3969/j.issn.1674-8646.2013.05.020
[11] 黄永相, 郭涛, 蔡金洋 , 等. 空间环境和 60Co-γ辐照对水稻稻米品质的诱变效应 . 核农学报, 2013,27(6):709-714.
doi: 10.11869/hnxb.2013.06.0709
[12] 曲龙, 卢夏茹, 李阳生 , 等. 水稻辐射诱变突变体的种子蛋白质成分分析. 广东农业科学, 2014(22):1-4.
[13] 鲍根良, 严文潮, 张小明 , 等. 粳稻优质米突变体E203的诱变选育研究. 核农学报, 2002,16(5):268-271.
[14] 张三元, 张俊国, 杨春刚 , 等. 空间环境诱变对粳稻食味品质影响分析. 吉林农业科学, 2009,34(6):1-3,6.
[15] 朱满山, 汤述翥, 顾铭洪 . RVA谱在稻米蒸煮食用品质评价及遗传育种方面的研究进展. 中国农学通报, 2005,21(8):59-64.
doi: 10.3969/j.issn.1000-6850.2005.08.017
[16] 吴关庭, 刘庆龙, 王贤裕 , 等. 早籼突变体稻米品质变化的研究. 核农学报, 2002,16(6):342-346.
doi: 10.3969/j.issn.1000-8551.2002.06.002
[17] 程海涛, 马兆惠, 刘桂林 , 等. 北方粳稻品种(系)资源淀粉RVA谱特征与品质性状典型相关分析. 作物杂志, 2017(2):59-66.
[18] 李刚, 邓其明, 李双成 , 等. 稻米淀粉RVA谱特征与品质性状的相关性. 中国水稻科学, 2009,23(1):99-102.
[1] Zhimin Du,Yuchen Yang,Yuanye Xia,Yanlong Gong,Zhiqiang Yan,Hai Xu. Effects of Harvest Time on Quality Traits of Hybrid Japonica Rice and Inbred Japonica Rice in Northern China [J]. Crops, 2018, 34(1): 147-151.
[2] Xijuan Zhang,Yongcai Lai,Ying Meng,Fengming Zhang,Ao Tang,Wenjun Dong,Chunxu Leng,Youhong Liu,Qi Wang. Effects of Planting Patterns on Growth, Yield and Temperature Utilization of Japonica Rice in Cold Region [J]. Crops, 2017, 33(5): 124-128.
[3] Haitao Cheng,Zhaohui Ma,Guilin Liu,Ping Cao,Wenyan Lü. Canonical Correlation Analysis between RVA Profile Characteristics and Quality Traits of Japonica Rice Varieties [J]. Crops, 2017, 33(2): 59-66.
[4] Ximing Xu,Xin Zhang,Lili Shi,Jing Cui,Deliang Ding,Hongyan Qu,Shouxian Gu,Yongjie Li. Evaluation of Rice Quality with Low Amylose Content in Hybrid Japonica Rice Combinations [J]. Crops, 2016, 32(6): 44-48.
[5] Liqiang Dong,Jing Ye,Shu Wang,Baoyan Jia,Yuancai Huang,Yan Wang. Effects of Sowing Rate on Yield and Photosynthetic Characteristics of Drill-Seeded Japonica Rice in North Cold Region [J]. Crops, 2016, 32(1): 86-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .