Crops ›› 2018, Vol. 34 ›› Issue (6): 58-67.doi: 10.16035/j.issn.1001-7283.2018.06.010

Previous Articles     Next Articles

Bioinformatics Identification of GASA Gene Family Expression Profiles in Wheat

Lü Liangjie,Chen Xiyong,Zhang Yelun,Liu Qian,Wang Limei,Ma Le,Li Hui   

  1. Hebei Academy of Agriculture and Forestry Sciences, Institute of Cereal and Oil Crops/Crop Genetics and Breeding Laboratory of Hebei, Shijiazhuang 050035, Hebei, China
  • Received:2018-06-18 Revised:2018-09-06 Online:2018-12-15 Published:2018-12-06

Abstract:

The Gibberellic Acid-Stimulated in Arabidopsis (GASA) gene family is a specific transcription factor in the plant that plays an important role in the regulation of plant growth and development. However,genome-wide analysis of the GASA gene family has not been reported in wheat. To further explore the function of the wheat GASA gene, 35 TaGASA genes, named TaGASAs, were obtained by analyzing the latest genomic data of wheat and were ranked according to the chromosome number as TaGASA1-TaGASA35. Combined with the published genome data of cultivar Chinese Spring, genes structure, chromosome distribution, the conserved domain of proteins, phylogenetic trees and gene expression profiles of the wheat cultivars were analyzed using bioinformatics methods. The results showed that 35 wheat TaGASA genes were distributed on the remaining 17 chromosomes except for 3A, 4A, 3B and 3D chromosomes. The genes encoded 78-264 amino acids in length and the number of gene exons was from 2 to 7. The results of tandem repeat analysis showed that fragment replication and tandem repeats were the main patterns of gene expansion in the wheat TaGASA family. The phylogenetic tree of wheat TaGASA proteins and the seven crops GASA proteins showed that GASA genes were divided into four categories, and the structure of the same class was similar. The 35 TaGASA genes family in wheat contain 10 motifs, and it is speculated that the wheat TaGASA gene family should contain motif1, motif2 and motif3. 35 TaGASA genes were all detected in 13 tissues and organs, and the expression of TaGASA genes in different tissues were significantly different.

Key words: Wheat, GASA, Bioinformatics, Phylogenetic tree, Expression profiling

Table 1

Basic information of 35 wheat TaGASA genes"

基因名
Gene name
基因号
Gene ID
染色体
Chromosome
基因位置
Gene position
编码区长度(bp)
Coding sequence length
蛋白质预测Protein prediction
氨基酸
Amino acid
分子量(kDa)
Molecular mass
等电点
Isoelectric point
TaGASA1 TRIAE_CS42_1AL_TGACv1_000841_AA0020140 1AL 11 587-12 505 234 78 8 614.10 8.86
TaGASA2 TRIAE_CS42_1AL_TGACv1_001082_AA0024620 1AL 45 226-52 080 276 92 9 682.22 8.63
TaGASA3 TRIAE_CS42_1AL_TGACv1_001087_AA0024740 1AL 80 457-81 335 309 103 11 179.17 8.81
TaGASA4 TRIAE_CS42_2AS_TGACv1_113018_AA0349790 2AS 10 196-10 865 276 92 10 008.82 8.63
TaGASA5 TRIAE_CS42_5AL_TGACv1_374351_AA1197750 5AL 109 217-110 185 336 112 12 493.61 8.72
TaGASA6 TRIAE_CS42_5AL_TGACv1_375002_AA1213750 5AL 39 823-40 585 282 94 9 785.41 8.90
TaGASA7 TRIAE_CS42_5AL_TGACv1_377138_AA1244440 5AL 8 818-10 778 294 98 10 405.23 9.01
TaGASA8 TRIAE_CS42_6AL_TGACv1_470886_AA1497600 6AL 203 827-205 475 348 116 11 953.76 8.27
TaGASA9 TRIAE_CS42_7AS_TGACv1_569647_AA1821120 7AS 74 216-74 910 303 101 10 250.03 8.97
TaGASA10 TRIAE_CS42_1BL_TGACv1_030884_AA0102980 1BL 104 154-105 075 309 103 11 352.46 8.80
TaGASA11 TRIAE_CS42_1BL_TGACv1_031264_AA0110580 1BL 17 666-18 665 276 92 9 775.39 8.62
TaGASA12 TRIAE_CS42_1BL_TGACv1_031280_AA0110820 1BL 12 426-13 100 288 96 10 283.13 9.34
TaGASA13 TRIAE_CS42_1BL_TGACv1_031520_AA0115510 1BL 89 188-90 015 276 92 9 748.32 8.46
TaGASA14 TRIAE_CS42_2BS_TGACv1_146134_AA0456280 2BS 148 955-149 945 315 105 10 795.84 8.47
TaGASA15 TRIAE_CS42_2BS_TGACv1_146482_AA0466170 2BS 94 799-95 305 276 92 9 946.66 8.44
TaGASA16 TRIAE_CS42_2BS_TGACv1_146482_AA0466210 2BS 106 417-115 675 792 264 28 627.28 8.64
TaGASA17 TRIAE_CS42_2BL_TGACv1_130684_AA0416060 2BL 40 977-41 825 321 107 10 985.85 8.90
TaGASA18 TRIAE_CS42_4BS_TGACv1_328307_AA1086010 4BS 137 696-138 720 294 98 10 390.35 9.30
TaGASA19 TRIAE_CS42_5BL_TGACv1_404222_AA1291170 5BL 136 136-149 510 501 167 17 405.47 9.34
基因名
Gene name
基因号
Gene ID
染色体
Chromosome
基因位置
Gene position
编码区长度(bp)
Coding sequence length
蛋白质预测Protein prediction
氨基酸
Amino acid
分子量(kDa)
Molecular mass
等电点
Isoelectric point
TaGASA20 TRIAE_CS42_5BL_TGACv1_405876_AA1336880 5BL 8 923-10 104 336 112 12 488.54 8.44
TaGASA21 TRIAE_CS42_6BL_TGACv1_499717_AA1589900 6BL 81 146-82 979 321 107 10 970.83 8.77
TaGASA22 TRIAE_CS42_7BS_TGACv1_593258_AA1949920 7BS 57 596-58 508 297 99 10 235.10 9.06
TaGASA23 TRIAE_CS42_7BL_TGACv1_578066_AA1888740 7BL 32 717-33 645 366 122 13 359.77 9.30
TaGASA24 TRIAE_CS42_1DL_TGACv1_061126_AA0186270 1DL 98 006-98 923 276 92 9 792.37 8.46
TaGASA25 TRIAE_CS42_1DL_TGACv1_061126_AA0186290 1DL 149 160-150 029 276 92 9 720.31 8.62
TaGASA26 TRIAE_CS42_1DL_TGACv1_061906_AA0205490 1DL 58 046-58 960 309 103 11 217.24 8.86
TaGASA27 TRIAE_CS42_2DS_TGACv1_177275_AA0571860 2DS 135 526-136 135 276 92 9 919.81 8.99
TaGASA28 TRIAE_CS42_2DS_TGACv1_179436_AA0607130 2DS 19 436-20 154 312 104 10 670.67 8.47
TaGASA29 TRIAE_CS42_4DS_TGACv1_362006_AA1175620 4DS 35 367-36 295 294 98 10 387.39 9.41
TaGASA30 TRIAE_CS42_5DL_TGACv1_433605_AA1417320 5DL 17 722-18 845 333 111 12 308.25 8.44
TaGASA31 TRIAE_CS42_5DL_TGACv1_433682_AA1419290 5DL 8 699-10 005 294 98 10 386.18 8.90
TaGASA32 TRIAE_CS42_5DL_TGACv1_435968_AA1456750 5DL 11 236-15 210 744 248 26 889.90 9.14
TaGASA33 TRIAE_CS42_6DL_TGACv1_527263_AA1701530 6DL 12 943-14 520 354 118 12 265.15 8.47
TaGASA34 TRIAE_CS42_7DS_TGACv1_622044_AA2031550 7DS 2 526-3 744 282 94 9 921.88 9.24
TaGASA35 TRIAE_CS42_7DL_TGACv1_602652_AA1963930 7DL 31 497-33 925 387 129 14 160.53 9.18

Fig.1

Homologous evolution analysis of TaGASA genes in wheat"

Fig.2

Phylogenetic tree and gene structures of wheat TaGASA gene family"

Fig.3

The phylogenetic analysis of GASA genes in wheat and other species"

Fig.4

Motif analysis of the wheat TaGASA genes family"

Fig.5

Protein tertiary structure of the wheat TaGASA gene family"

Fig.6

Expression profile of TaGASA genes in thirteen tissues of wheat 1: Coleoptile; 2: Seed root; 3: Embryo; 4: Root; 5: Crown; 6: Leaf; 7: Immature inflorescence; 8: Floral bracts; 9: Pistil; 10: Anthers; 11: 3-5 DAP caryopsis; 12: 22 DAP embryo; 13: 22 DAP endosperm"

[1] Roxrud I, Lid S E, Fletcher J C , et al. GASA4,one of the 14-member Arabidopsis GASA family of small polypeptides,regulates flowering and seed development. Plant and Cell Physiology, 2007,48(3):471-483.
doi: 10.1093/pcp/pcm016 pmid: 17284469
[2] Aubert D, Chevillard M, Dorne A M , et al. Expression patterns of GASA genes in Arabidopsis thaliana:the GASA4 gene is up-regulated by gibberellins in meristematic regions. Plant Molecular Biology, 1998,36(6):871-883.
doi: 10.1023/A:1005938624418 pmid: 9520278
[3] Wigoda N, Ben-Nissan G, Granot D , et al. The gibberellin-induced,cysteine-rich protein GIP2 from Petunia hybrida exhibits in planta antioxidant activity. Plant Journal, 2010,48(5):796-805.
doi: 10.1111/j.1365-313X.2006.02917.x pmid: 17076804
[4] Wang L, Wang Z, Xu Y Y , et al. OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. Plant Journal, 2010,57(3):498-510.
doi: 10.1111/j.1365-313X.2008.03707.x pmid: 18980660
[5] Zhang S C, Wang X J . Expression pattern of GASA,downstream genes of DELLA,in Arabidopsis. Chinese Science Bulletin, 2008,53(24):3839-3846.
[6] Sun S L, Wang H X, Yu H M , et al. GASA14 regulates leaf expansion and abiotic stress resistance by modulating reactive oxygen species accumulation. Journal of Experimental Botany, 2013,64(6):1637-1647.
doi: 10.1093/jxb/ert021 pmid: 23378382
[7] Shi L F, Gast R T, Gopalraj M , et al. Characterization of a shoot-specific,GA3- and ABA-regulated gene from tomato. Plant Journal, 2010,2(2):153-159.
doi: 10.1111/j.1365-313X.1992.00153.x pmid: 1302047
[8] Taylor B H, Scheuring C F . A molecular marker for lateral root initiation:The RSI-1 gene of tomato (Lycopersicon esculentum Mill) is activated in early lateral root primordia. Molecular & General Genetics, 1994,243(2):148-157.
doi: 10.1007/BF00280311 pmid: 8177211
[9] Ben-Nissan G, Lee J Y, Borohov A , et al. GIP,a Petunia hybrida GA-induced cysteine-rich protein:a possible role in shoot elongation and transition to flowering. Plant Journal for Cell & Molecular Biology, 2010,37(2):229-238.
doi: 10.1046/j.1365-313X.2003.01950.x pmid: 14690507
[10] Berrocallobo M, Segura A, Moreno M , et al. Snakin-2,an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiology, 2002,128(3):951-961.
doi: 10.1104/pp.010685
[11] Furukawa T, Sakaguchi N, Shimada H . Two OsGASR genes,rice GAST homologue genes that are abundant in proliferating tissues,show different expression patterns in developing panicles. Genes & Genetic Systems, 2006,81(3):171-180.
doi: 10.1266/ggs.81.171 pmid: 16905871
[12] 刘秋华, 罗曼, 彭建宗 , 等. 水稻OsGASR4基因及其启动子的克隆与表达分析. 华南师范大学学报, 2015(1):81-86.
doi: 10.6054/j.jscnun.2014.11.006
[13] Kotilainen M, Helariutta Y, Mehto M , et al. GEG participates in the regulation of cell and organ shape during corolla and carpel development in Gerbera hybrida. Plant Cell, 1999,11(6):1093-1104.
doi: 10.1105/tpc.11.6.1093
[14] De la Fuente J I AI, Castillejo C, Sanchez-Sevilla JF , et al. The strawberry gene FaGAST affects plant growth through inhibition of cell elongation. Journal of Experimental Botany, 2006,57(19):2401-2411.
doi: 10.1093/jxb/erj213 pmid: 16804055
[15] Liu Z H, Zhu L, Shi H Y , et al. Cotton GASL genes encoding putative gibberellin-regulated proteins are involved in response to GA signaling in fiber development. Molecular Biology Reports, 2013,40(7):4561-4570.
doi: 10.1007/s11033-013-2543-1 pmid: 23645033
[16] 张盛春, 王小菁 . 拟南芥DELLA下游的GASA基因表达研究. 科学通报, 2008,53(22):2760.
doi: 10.1360/csb2008-53-22-2760
[17] Rubinovich L, Weiss D . The Arabidopsis cysteine-rich protein GASA4 promotes GA responses and exhibits redox activity in bacteria and in planta. Plant Journal, 2010,64(6):1018-1027.
doi: 10.1111/j.1365-313X.2010.04390.x pmid: 21143681
[18] Zimmermann R, Sakai H, Hochholdinger F . The gibberellic acid stimulated-like gene family in maize and its role in lateral root development. Plant Physiology, 2010,152(1):356-365.
doi: 10.1104/pp.109.149054 pmid: 19926801
[19] Zhang S C, Yang C W, Peng J Z , et al. GASA5,a regulator of flowering time and stem growth in Arabidopsis thaliana. Plant Molecular Biology, 2009,69(6):745-759.
doi: 10.1007/s11103-009-9452-7 pmid: 202020522020202020202020202020
[20] Moyano-Cañete E, Bellido M L, García-Caparrós N , et al. FaGAST2,a strawberry ripening-related gene,acts together with FaGAST1 to determine cell size of the fruit receptacle. Plant & Cell Physiology, 2013,54(2):218-236.
doi: 10.1093/pcp/pcs167 pmid: 23231876
[21] Blancoportales R, Lópezraéz J A, Bellido M L , et al. A strawberry fruit-specific and ripening-related gene codes for a HyPRP protein involved in polyphenol anchoring. Plant Molecular Biology, 2004,55(6):763-780.
doi: 10.1007/s11103-004-1966-4 pmid: 15604715
[22] Mao Z C, Zheng J Y, Wang Y S , et al. The new CaSn gene belonging to the snakin family induces resistance against root-knot nematode infection in pepper. Phytoparasitica, 2011,39(2):151-164.
doi: 10.1007/s12600-011-0149-5
[23] Zhang S C, Wang X J . Over expression of GASA5 increases the sensitivity of Arabidopsis to heat stress. Journal of Plant Physiology, 2011,168(17):2093-2101.
doi: 10.1016/j.jplph.2011.06.010
[24] Rubinovich L, Ruthstein S, Weiss D . The Arabidopsis cysteine-rich GASA5 is a redox-active metalloprotein that suppresses gibberellin responses. Molecular Plant, 2014,7(1):244-247.
doi: 10.1093/mp/sst141 pmid: 24157610
[25] Huang X H, Zhao Y, Wei X H , et al. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genetics, 2011,44(1):32-39.
doi: 10.1038/ng.1018 pmid: 22138690
[26] Ling H Q, Zhao S C, Liu D C , et al. The draft genome of Triticum urartu. Nature, 2013,496:487-490.
[27] Zhang D D, Wang B N, Zhao J M , et al. Divergence in homoeolog expression of the grain length-associated gene GASR7 during wheat allohexaploidization. The Crop Journal, 2015,3(1):1-9.
doi: 10.1016/j.cj.2014.08.005
[28] Avni R, Nave M, Barad O , et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science, 2017,357(6346):93.
doi: 10.1126/science.aan0032 pmid: 28684525
[29] Jia J Z, Zhao S C, Kong X Y , et al. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 2013,496(7443):91-95.
doi: 10.1038/nature12028 pmid: 23535592
[30] Ling H Q, Zhao S C, Liu D C , et al. Draft genome of the wheat A-genome progenitor Triticum urartu. Science Foundation in China, 2013,496(2):87-90.
doi: 10.1038/nature11997 pmid: 20
[31] Choulet F, Alberti A, Theil S , et al. Structural and functional partitioning of bread wheat chromosome 3B. Science, 2014,345(6194):1249721.
doi: 10.1126/science.1249721 pmid: 25035497
[32] Edgar R C . MUSCLE:multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 2004,32(5):1792-1797.
doi: 10.1093/nar/gkh340
[33] Kumar S, Stecher G, Tamura K . MEGA7:Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology & Evolution, 2016,33(7):1870-1874.
[34] 赵腾, 夏新莉, 尹伟伦 . 黑杨GASA基因的克隆和功能分析. 广东农业科学, 2012,39(8):138-140.
doi: 10.3969/j.issn.1004-874X.2012.08.043
[35] 李昆仑, 柏锡, 卢姗 , 等. 碱胁迫应答GsGASA1及GsGASA2基因表达特性研究. 东北农业大学学报, 2012,43(1):143-148.
doi: 10.3969/j.issn.1005-9369.2012.01.025
[1] Long Suxia,Li Fangfang,Shi Shuya,Zhao Yingjia,Xiao Kai. Effects of Coordinately Application of N, P, and K on Nutrient Contents in Plants and Soils and Wheat Yield [J]. Crops, 2018, 34(6): 96-102.
[2] Shi Liran,Bai Lirong,Lü Yaci,Zhao Minghui,Zhao Fengwu,Li Huimin. Analysis of Salt Tolerance at the Seedling Stage of Wheat Hybrid Variety Heng 9966 [J]. Crops, 2018, 34(6): 149-153.
[3] Zhao Xin,Chen Shaofeng,Wang Hui,Liu Sancai,Yang Xiushi,Zhang Baolin. Research on the Yield and Quality of Different Tartaty Buckwheat Varieties in Northern Shanxi Area [J]. Crops, 2018, 34(5): 27-32.
[4] Wang Hanxia,Shan Fuhua,Tian Liping,Ma Qiaoyun,Zhao Changping,Zhang Fengting. Analysis of Stability and Adaptability of Winter Wheat Varieties in the Regional Trials of the Northern Wheat Region of China [J]. Crops, 2018, 34(5): 40-44.
[5] An Xia,Zhang Haijun,Jiang Fangshan,Lianjie Lü,Chen Jun. Effects of Different Sowing Dates and Sowing Densities on the Population Structure and Yield of Two Spike Type Winter Wheats [J]. Crops, 2018, 34(5): 132-136.
[6] Wang Jianan,Li Xiaoyan,Wei Shimei,Zhao Huijie,Zhao Mingqi,Wang Yuexia. Regulation of Exogenous 5-Aminolevulinic Acid on Photosynthesis and D1 Protein of Wheat Seedlings under Drought Stress [J]. Crops, 2018, 34(5): 121-126.
[7] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production [J]. Crops, 2018, 34(4): 1-7.
[8] Fei Yang,Wenli Ma,Yongwei Chen,Zhansheng Zhang,Hao Wang. The Effects of Uniform Sowing and Drip Irrigation on the Spike Differentiation and Yield of Spring Wheat [J]. Crops, 2018, 34(4): 84-88.
[9] Haibin Luo, Shengli Jiang, Chengmei Huang, Huiqing Cao, Zhinian Deng, Kaichao Wu, Lin Xu, Zhen Lu, Yuanwen Wei. Cloning and Expression of ScHAK10 Gene in Sugarcane [J]. Crops, 2018, 34(4): 53-61.
[10] Huiqin Wen,Tianling Cheng,Ziyou Pei,Xue Li,Lisheng Zhang,Mei Zhu. Analysis of Comprehensive Characteristics of Wheat Varieties Registered in Shanxi Province in Recent Years [J]. Crops, 2018, 34(4): 32-36.
[11] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation [J]. Crops, 2018, 34(4): 121-125.
[12] Zheng Wang,Zhaobo Chen,Shengquan Zhang,Liping Ren,Xinhuan Gao,Zhijie Ye,Fengting Zhang. Feasibility Analysis of BS Series Hybrid Wheat Seed Production in Weinan of Shaanxi Province [J]. Crops, 2018, 34(3): 174-179.
[13] Junchan Wang,Zhifu Gao,Dongsheng Li,Dongmei Zhu,Hongya Wu. The Application of Agricultural Information Technology in Wheat Breeding [J]. Crops, 2018, 34(3): 37-43.
[14] Bin Zhang,Jinxiu Li,Zhen Wang,Hao Feng,Jinbang Li. Correlation and Cluster Analysis of Agronomic Traits in Wheat Lines [J]. Crops, 2018, 34(3): 57-60.
[15] Lina Jiang,Ying Yue,Jinna Li,Yawen Zhang,Yalin Zhu,Chunxi Li. Effects of Nitrogen Application Rate on Nitrogen Allocation and Nitrogen Utilization after Anthesis in Wheat [J]. Crops, 2018, 34(2): 80-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!