Crops ›› 2018, Vol. 34 ›› Issue (6): 53-57.doi: 10.16035/j.issn.1001-7283.2018.06.009

Previous Articles     Next Articles

Genetic Diversity of Flax Germplasm Resources in Inner Mongolia

Yi Liuxi1,Siqin Bateer1,Gao Fengyun1,Zhou Yu1,Jia Xiaoyun1,Chen Mingzhe2,Zhang Hui1,Jia Haibin3   

  1. 1 Biotechnology research center of the Inner Mongolia Academy of Agriculture and Husbandry Sciences, Huhhot 010031, Inner Mongolia, China
    2 Xilinguole Meng Institute of Agricultural Sciences, Xilinhaote 026000, Inner Mongolia, China
    3 Wulanchabu Academy of Agriculture and Animal Husbandry, Jining 012000, Inner Mongolia, China
  • Received:2018-04-18 Revised:2018-08-23 Online:2018-12-15 Published:2018-12-06

Abstract:

In order to further understand the genetic diversity and genetic relationship of Inner Mongolia flax local varieties, the genetic diversity of 23 flax local varieties was analyzed using SRAP markers. The optimum SRAP PCR system contained 0.3μL of forward and reverse primer (10μmol/L), 9.0μL of 2×Taq Master Mix and 40ng template DNA in 25μL. 219 bands were produced by the 18 pairs of primers with an average of 12.17 bands for each pair of primers. 136 polymorphic bands were obtained and the polymorphic band proportion was 62.10%. The number of observed allele was 2.00, with 1.59 effective alleles for each locus. The average polymorphic information content was 0.61. The effective allele number (Ne), Shannon’s information index (I), and Nei’s genetic similarity coefficient (H) were 1.5630, 0.6715 and 0.438, respectively. When H was 0.55, the population was divided into 2 groups, when H was 0.38, the first population was dividid into 3 sub-groups. It could be concluded that the Inner Mongolia flax local varieties possess abundant genetic diversity and the flax varieties cultivated in the same area are closely related.

Key words: Flax, Inner Mongolia, Genetic diversity, SRAP

Table 1

Name and code of 23 flax cultivars (lines)"

编号Code 品种(系)Cultivar (Line)
1 H919
2 H920
3 H921
4 H922
5 内亚油一号Neiyayouyihao
6 临河17号Linhe No.17
7 集宁1号Jining No.1
8 集宁2号Jining No.2
9 轮选3号Lunxuan No.3
10 轮选2号Lunxuan No.2
11 轮选1号Lunxuan No.1
编号Code 品种(系)Cultivar (Line)
12 内蒙红Neimenghong
13 内亚2号Neiya No.2
14 CH-89
15 内亚5号Neiya No.5
16 内亚6号Neiya No.6
17 内亚7号Neiya No.7
18 华德小胡麻Huadexiaohuma
19 华德大粒高杆Huadedaligaogan
20 多伦小胡麻Duolunxiaohuma
21 多伦大胡麻Duolundahuma
22 后旗普通胡麻Houqiputonghuma
23 乌拉特中旗3号Wulatezhongqi No.3

Table 2

SRAP primer sequences used in the experiment"

正向引物Forward primer 反向引物Reverse primer
名称Name 序列Sequence (5'→3') 名称Name 序列Sequence (5'→3')
M1 5′-TGAGTCCAAACCGGCAT-3′ E1 5′-GACTGCGTACGAATTGTA-3′
M2 5′-TGAGTCCAAACCGGACA-3′ E2 5′-GACTGCGTACGAATTCGA-3′
M3 5′-TGAGTCCAAACCGGAAG-3′ E3 5′-GACTGCGTACGAATTGTC-3′
M4 5′-TGAGTCCAAACCGGATG-3′ E4 5′-GACTGCGTACGAATTCAA-3′
M5 5′-TGAGTCCAAACCGGTGC-3′ E5 5′-GACTGCGTACGAATTGTC-3′
M6 5′-TGAGTCCAAACCGGAAT-3′ E6 5′-GACTGCGTACGAATTCTA-3′
M7 5′-TGAGTCCAAACCGGTGC-3′ E7 5′-GACTGCGTACGAATTCGA-3′
M8 5′-TGAGTCCAAACCGGACG-3′ E8 5′-GACTGCGTACGAATTTGA-3′
M9 5′-TGAGTCCAAACCGGTCC-3′ E9 5′-GACTGCGTACGAATTGTA-3′
M10 5′-GACTGCGTACGAATTACT-3′ E10 5′-GACTGCGTACGAATTAGC-3′
M11 5′-TGAGTCCAAACCGGAAC-3′ E11 5′-GACTGCGTACGAATTACT-3′
M12 5′-GACTGCGTACGAATTCGA-3′ E12 5′-GACTGCGTACGAATTAAT-3′

Table 3

Orthogonal design L16(4)3 of reaction system"

编号
Code
引物量(μL)
Primer quantity
2×Taq (μL)
Master Mix
DNA模板量(ng)
DNA template quantity
1 0.1 7.0 25
2 0.1 9.0 30
3 0.1 12.0 35
4 0.1 15.0 40
5 0.2 7.0 30
6 0.2 9.0 25
7 0.2 12.0 40
8 0.2 15.0 35
9 0.3 7.0 35
10 0.3 9.0 40
11 0.3 12.0 25
12 0.3 15.0 30
13 0.5 7.0 40
14 0.5 9.0 35
15 0.5 12.0 30
16 0.5 15.0 25

Fig.1

Amplification of SRAP-PCR system under orthogonal design M, 1500bp DNA marker; 1~16, Orthogonal test combination"

Table 4

Amplification of flax with the 18 pairs of SRAP primer"

引物名称
Primer name
总位点数
Total loci
多态性位点数Polymorphic loci 多态性位点百分率(%)
Percentage of polymorphic loci
有效等位基因数
Effective alleles
PIC
M9E11 12.00 7.00 58.33 1.61 0.59
M1E5 11.00 8.00 72.73 1.71 0.63
M8E2 13.00 9.00 69.23 1.62 0.58
M10E9 14.00 10.00 71.43 1.73 0.67
M6E11 10.00 7.00 70.00 1.49 0.65
M1E9 12.00 8.00 66.67 1.60 0.70
M5E2 13.00 8.00 61.54 1.66 0.54
M7E4 16.00 9.00 56.25 1.55 0.62
M4E4 12.00 7.00 58.33 1.53 0.66
M4E10 11.00 6.00 54.55 1.51 0.62
M3E5 14.00 8.00 57.14 1.69 0.57
M9E6 15.00 9.00 60.00 1.57 0.64
M10E3 13.00 7.00 53.85 1.44 0.61
M4E7 11.00 8.00 72.73 1.65 0.68
M5E6 10.00 5.00 50.00 1.49 0.51
M3E3 9.00 6.00 66.67 1.67 0.58
M10E6 11.00 7.00 63.64 1.55 0.55
M1E3 12.00 7.00 58.33 1.59 0.61
总计Total 219.00 136.00 1 121.42 28.66 11.01
平均值Average 12.17 7.56 62.30 1.59 0.61

Fig.2

Clustering of 23 flax cultivars with SRAP markers A, First group of cultivars; B, Second group of cultivars; Ⅰ, Ⅱ, Ⅲ, Represent the 3 sub-groups; 1~23 corresponding materials as table 1"

[1] 伊六喜, 斯钦巴特尔, 贾霄云 ,等. 胡麻种质资源、育种及遗传研究进展. 中国麻业科学, 2017,39(2):81-87.
doi: 10.3969/j.issn.1671-3532.2017.02.006
[2] 伊六喜, 斯钦巴特尔, 张辉 ,等. 胡麻种质资源遗传多样性及亲缘关系的SRAP分析. 西北植物学报, 2017,37(10):1941-1950.
[3] 伊六喜, 萨如拉, 张辉 , 等. 胡麻种子产量与主要农艺性状的多重分析. 安徽农业科学, 2018,46(6):33-36.
[4] 李明, 姜硕, 郑东泽 , 等. 亚麻SRAP标记连锁图谱的构建及3个数量性状的定位. 东北农业大学学报, 2014,45(2):12-18.
[5] 安泽山, 严兴初, 党占海 , 等. 利用SRAP标记分析胡麻资源遗传多样性. 西南农业学报, 2014,27(2):530-534.
doi: 10.3969/j.issn.1001-4829.2014.02.013
[6] 伊六喜 , 斯钦巴特尔,张辉,等. 胡麻核心种质资源表型变异及SRAP分析. 中国油料作物学报, 2017,39(6):794-804.
[7] 郝荣楷, 严兴初, 党占海 , 等. 我国胡麻育成品种的遗传多样性分析. 中国油料作物学报, 2014,36(3):334-342.
doi: 10.7505/j.issn.1007-9084.2014.03.007
[8] 吴建忠, 赵东升, 黄文功 , 等. 12个亚麻品种亲缘关系的SRAP分析. 中国麻业科学, 2012,34(4):153-157.
doi: 10.3969/j.issn.1671-3532.2012.04.001
[9] Stewart C, Via L . A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques, 1993,14(5):748-750.
[10] Li G, Quiros C F . Sequence-related amplified polymorphism (SRAP),a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theoretical & Applied Genetics, 2001,103(2-3):455-461.
[11] 孙翊, 张永春, 殷丽青 , 等. 朱顶红SRAP-PCR反应体系的建立和优化. 分子植物育种, 2017,15(5):1806-1813.
[12] Gresshoff P M . Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical Biochemistry, 1991,196(1):80-83.
doi: 10.1016/0003-2697(91)90120-I pmid: 1716076
[13] 张安世, 徐九文, 张利民 , 等. 北方部分粳稻品种遗传关系的SRAP分析. 作物杂志, 2009(6):55-58.
doi: 10.3969/j.issn.1001-7283.2009.06.014
[14] 石玲艳, 侯建华, 张永虎 , 等. 基于SRAP标记的玉米自交系遗传多样性与群体结构分析. 作物杂志, 2015(3):57-63.
doi: 10.16035/j.issn.1001-7283.2015.03.011
[15] 李锐, 白建荣, 王秀红 , 等. 144份甜玉米群体的遗传多样性分析. 作物杂志, 2018(2):17-24.
[16] 张帅, 庞玉辉, 王征宏 , 等. 小麦种质资源农艺性状变异及其遗传多样性分析. 作物杂志, 2018(2):44-51.
[17] Botstein D, White R L, Skolnick M , et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 1980,32(3):314-331.
[18] 令狐斌, 侯思宇, 孙朝霞 , 等. 苦荞SRAP分子标记体系优化与遗传多样性分析. 中国农业大学学报, 2015,20(1):37-43.
doi: 10.11841/j.issn.1007-4333.2015.01.05
[19] 李维卫, 王爱兰, 聂臻臻 . S山茴香RAP反应体系正交设计优化及引物筛选. 基因组学与应用生物学, 2017,36(8):3103-3109.
[20] 延娜, 李巧丽, 郭军战 . 果桑遗传差异的SRAP和EST-SSR分析. 西北农业学报, 2015,24(9):91-97.
[21] 李霞, 李书华, 杨林 , 等. 芦笋种质资源的SRAP遗传多样性分析. 农学学报, 2016,6(3):40-45.
[22] 林春华, 李兆龙, 乔燕春 , 等. SRAP分子标记分析体系的建立及白簕资源亲缘关系分析. 基因组学与应用生物学, 2012,31(5):498-504.
[23] 张良波, 王解香, 李培旺 , 等. 梾木属SRAP-PCR反应体系的优化及引物筛选. 分子植物育种, 2014,12(5):1005-1010.
[24] 杨永, 王豪杰, 张学军 , 等. 新疆甜瓜地方种质资源遗传多样性的SRAP分析. 植物遗传资源学报, 2017,18(3):436-448.
doi: 10.13430/j.cnki.jpgr.2017.03.008
[25] 黄伟, 鲁敏, 张起 , 等. 利用SRAP标记分析贵州砂梨资源遗传多样性. 西北植物学报, 2016,36(2):280-287.
doi: 10.7606/j.issn.1000-4025.2016.02.0280
[26] 朱海生, 叶新如, 陈敏氡 , 等. 丝瓜种质资源的SRAP分析. 分子植物育种, 2016,14(8):2217-2223.
[1] Wu Ruixiang,Yang Jianchun,Wang Liqin,Guo Xiujuan. Evaluation of the Adaptability of Flax Drought Resistance Based on Multiple Statistics Analysis [J]. Crops, 2018, 34(5): 10-16.
[2] Ma Mengli,Zheng Yun,Zhou Xiaomei,Zhang Tingting,Zhang Xiaoqian,Lu Bingyue. Genetic Diversity Analysis of Red Rice from Hani’s Terraced Fields in Yunnan Province [J]. Crops, 2018, 34(5): 21-26.
[3] Huiyao Tian,Jizhi Jiang,Chengbin Li,Fen Shen,Ning Hou. Genetic Diversity of Phytophthora infestans in Northeast China [J]. Crops, 2018, 34(3): 168-173.
[4] Shuai Zhang,Yuhui Pang,Zhenghong Wang,Liming Wang,Chunyan Chen,Zhankui Zeng,Chunping Wang. Variation of Agronomic Traits and Genetic Diversity in Wheat Germplasms [J]. Crops, 2018, 34(2): 44-51.
[5] Rui Li,Jianrong Bai,Xiuhong Wang,Congzhuo Zhang,Xiaomei Zhang,Lei Yan,Ruijuan Yang. Population Genetic Diversity of 144 Sweet Maizes [J]. Crops, 2018, 34(2): 17-24.
[6] Lu Zhao,Zhiwei Yang,Liqun Bu,Ling Tian,Mei Su,Lei Tian,Yinxia Zhang,Shuqin Yang,Peifu Li. Analysis and Comprehensive Evalution of Phenotypic Genetic Diversity of Ningxia and Xinjiang Rice Germplasm [J]. Crops, 2018, 34(1): 25-34.
[7] Pengyan Guo,Caiping Wang,Jiecheng Ren,Jiping Zhao,Ying Xu,Maolin Yue. Genetic Diversity of Agronomic Traits of Mung Beans from Different Geographical Sources [J]. Crops, 2017, 33(6): 55-59.
[8] Lianmei Tai,Yuhu Zuo,Yaling Zhang,Yongling Jin,Yongxia Guo,Xuehui Jin,Guanghui Jin. Analysis of Genetic Diversity of Alternaria solani Isolated from Potato in Heilongjiang Province [J]. Crops, 2017, 33(3): 151-156.
[9] Xiujuan Guo,Xuejin Feng,Jianchun Yang,Ruixiang Wu,Liqin Wang. Effects of Interaction between Fertilizer and Density on the Yield and Economic Traits of Flax [J]. Crops, 2017, 33(2): 135-138.
[10] Chaowu Zeng,Xiaodong Liang,Jianjiang Li. Genetic Diversity Analysis on Main Characters of Spring Wheat Germplasms in Central Asia [J]. Crops, 2017, 33(2): 67-71.
[11] Hongxiao Ren,Cuimian Jiang,Yunqing Gao,Qibing Shang,Dongxu Xu,Fang Wang,Xuzhen Cheng. Genetic Diversity and Phenotypic Trait of Chinese Tradional Famous Mungbean [J]. Crops, 2017, 33(1): 44-47.
[12] Hongmei Yuan,Wendong Guo,Lijuan Zhao,Ying Yu,Jianzhong Wu,Lili Cheng,Dongsheng Zhao,Qinghua Kang,Wengong Huang,Yubo Yao,Xixia Song,Weidong Jiang,Yan Liu,Tingfen Ma,Guangwen Wu,Fengzhi Guan. Cloning and Expression Analysis of the Glycosyltransferase Gene LuUGT72E1 in Flax [J]. Crops, 2016, 32(4): 62-67.
[13] Yubo Yao,Guangwen Wu,Wengong Huang,Qinghua Kang,Weidong Jiang,Ying Lu,Shuquan Zhang. Potassium Use Efficiency of Different Flax Genotypes [J]. Crops, 2016, 32(4): 80-85.
[14] Shuyan Wang,Bing Han,Simin Zhou,Jun Xu. Correlation Analysis between the Expression of Stearoyl Acyl Carrier Protein Dehydrogenase Gene and the Soluble Sugar and Fat Content of Oil Flax [J]. Crops, 2016, 32(4): 56-61.
[15] Xiuxia Cao,Aiping Qian,Wei Zhang,Chongqing Yang. The Effects of Different Amounts of Zinc Fertilizer on the Growth and Yield of Oil-Flax in Arid Land [J]. Crops, 2016, 32(3): 167-170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!