Crops ›› 2019, Vol. 35 ›› Issue (2): 8-14.doi: 10.16035/j.issn.1001-7283.2019.02.002
Previous Articles Next Articles
Lilei Guo1,2,Jialin Zhu3,Shixian Sun2,Shuo Yan1,2
[1] | Lavigne C, Klein E K, Vallée P , et al. A pollen-dispersal experiment with transgenic oilseed rape. Estimation of the average pollen dispersal of an individual plant within a field. Theoretical and Applied Genetics, 1998,96(9):886-896. |
[2] |
Nap J P, Metz P L J,Escaler M ,et al. The release of genetically modified crops into environment:Part I overview of current status and regulations. The Plant Journal, 2003,33(1):1-18.
doi: 10.1046/j.0960-7412.2003.01602.x |
[3] |
李瑞峰, 王莹, 王宇 , 等. 转基因作物及其生物安全性. 东北农业大学学报, 2007,38(3):405-410.
doi: 10.3969/j.issn.1005-9369.2007.03.027 |
[4] |
O’Callaghan M, Glare T R, Burgess E P J , et al. Effects of plants genetically modified for insect resistance on nontarget organisms. Annual Review of Entomology, 2005,50(4):271-292.
doi: 10.1146/annurev.ento.50.071803.130352 pmid: 15355241 |
[5] | 朱彦涛, 徐虹, 郭蔼光 , 等. 植物转基因技术与当代社会发展. 中国农学通报, 2008,24(4):509-522. |
[6] |
Hermannsson J, Kristjansdottir T A, Stefansson T S , et al. Measuring gene flow in barley fields under Icelandic sub-arctic conditions using closed-flowering varieties. Icelandic Agricultural Sciences, 2010,23(64):51-59.
doi: 10.1071/CP08123_ER |
[7] |
James C. 2015年全球生物技术/转基因作物商业化发展态势. 中国生物工程杂志, 2016,36(4):1-11.
doi: 10.13523/j.cb.20160401 |
[8] | James C. 2017年全球生物技术/转基因作物商业化发展态势. 中国生物工程杂志, 2018,38(6):1-8. |
[9] |
李静, 李红芳, 张换样 , 等. 全球转基因作物的产业化发展. 山西农业科学, 2009,37(1):3-8.
doi: 10.3969/j.issn.1002-2481.2009.01.001 |
[10] | James C. 2014年全球生物技术/转基因作物商业化发展态势. 中国生物工程杂志, 2015,35(1):1-14. |
[11] | 卢宝荣, 张文驹, 李博 . 转基因的逃逸及生态风险. 应用生态学报, 2003,14(6):989-994. |
[12] | 卢宝荣, 夏辉 . 转基因植物的环境生物安全:转基因逃逸及其潜在生态风险的研究和评价. 生命科学, 2011,23(2):186-194. |
[13] |
韦祖生, 田益农, 马崇熙 . 作物基因漂移研究综述. 现代农业科技, 2017(13):13-15.
doi: 10.3969/j.issn.1007-5739.2011.13.002 |
[14] |
Bertolla F, Simonet P . Horizontal gene transfers in the environment:natural transformation as a putative process for gene transfers between transgenic plants and microorganisms. Research in Microbiology, 1999,150(6):375-384.
doi: 10.1016/S0923-2508(99)80072-2 pmid: 10466405 |
[15] |
Ellstrand N C, Prentiee H C, Hancock J F . Gene flow and introgression from domesticated plants into their wild relatives. Annual Review of Ecology and Systematics, 1999,30(1):539-563.
doi: 10.1146/annurev.ecolsys.30.1.539 |
[16] |
Ellstrand N C . Current knowledge of gene flow in plants:implications for transgene flow. Philosophical Transactions of the Royal Society B:Biological Science, 2003,358(1434):1163-1170.
doi: 10.1098/rstb.2003.1299 pmid: 12831483 |
[17] | Ochman H, Lawrenee J G, Groisman E A . Lateral gene transfer and the nature of bacterial innovation. Nature, 2000,405(6784):299-304. |
[18] |
Gogarten J P, Townsend J P . Horizontal gene transfer,genome innovation and evolution. Nature Reviews Microbiology, 2005,3(9):679-687.
doi: 10.1038/nrmicro1204 pmid: 16138096 |
[19] |
Pasquet R S, Peltier A, Hufford M B , et al. Long-distance pollen flow assessment through evaluation of pollinator foraging range suggests transgene escape distances. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(36):13456-13461.
doi: 10.1073/pnas.0806040105 pmid: 18768793 |
[20] |
Marceau A, Loubet B, Andrieu B , et al. Modeling diurnal and seasonal patterns of maize pollen emission in relation to meteorological factors. Agricultural and Forest Meteorology, 2011,151(1):11-21.
doi: 10.1016/j.agrformet.2010.08.012 |
[21] |
Zhang K, Li Y, Lian L . Pollen-mediated transgene flow in maize grown in the Huang-huai-hai region in China. Journal of Agricultural Science, 2011,149(2):205-216.
doi: 10.1017/S0021859610000602 |
[22] |
贺娟, 朱威龙, 朱家林 , 等. 风、蜜蜂因素对转Cry1Ac基因棉花花粉介导的基因漂移的影响. 棉花学报, 2013,25(5):453-458.
doi: 10.3969/j.issn.1002-7807.2013.05.012 |
[23] |
朱家林, 贺娟, 牛建群 , 等. 风向因素对转基因抗虫棉花基因漂移效率的影响. 生态学报, 2013,33(21):6803-6812.
doi: 10.5846/stxb201207040932 |
[24] |
Yan S, Zhu J L, Zhu W L , et al. Pollen-mediated gene flow from transgenic cotton under greenhouse conditions is dependent on different pollinators. Scientific Reports, 2015,5:15917.
doi: 10.1038/srep15917 pmid: 4630633 |
[25] |
闫硕, 朱家林, 朱威龙 , 等. 风速对转基因棉花基因漂移的影响. 生态学杂志, 2017,36(8):2217-2223.
doi: 10.13292/j.1000-4890.201708.004 |
[26] |
Yoshimura Y, Beckie H J, Matsuo K . Transgenic oilseed rape along transportation routes and port of Vancouver in western Canada. Environmental Biosafety Research, 2006,5(2):67-75.
doi: 10.1051/ebr:2006019 pmid: 17328853 |
[27] |
Garnier A, Pivard S, Lecomte J . Measuring and modeling anthropogenic secondary seed dispersal along roadverges for feral oilseed rape. Basic and Applied Ecology, 2008,9(5):533-541.
doi: 10.1016/j.baae.2007.08.014 |
[28] |
Amsellem L, Noyer J L , Hossaert-McKey M. Evidence for a switch in the reproductive biology of Rubus alceifolius (Rosaceae) towards apomixis,between its native range and its area of introduction. American Journal of Botany, 2001,88(12):2243-2251.
doi: 10.2307/3558386 |
[29] |
Cureton A N, Newbury H J, Raybould A F , et al. Genetic structure and gene flow in wild beet populations:the potential influence of habitat on transgene spread and risk assessment. Journal of Applied Ecology, 2006,43(6):1203-1212.
doi: 10.1111/j.1365-2664.2006.01236.x |
[30] |
Chandler S, Dunwell J M . Gene flow,risk assessment and the environmental release of transgenic plants. Critical Reviews in Plant Sciences, 2008,27(1):25-49.
doi: 10.1080/07352680802053916 |
[31] |
Lu B R, Yang C . Gene flow from genetically modified rice to its wild relatives:Assessing potential ecological consequences. Biotechnology Advance, 2009,27(6):1083-1091.
doi: 10.1016/j.biotechadv.2009.05.018 pmid: 19463932 |
[32] |
Friesen L F, Nelson A G , Van Acker R C. Evidence of contamination of pedigreed canola (Brassica napus) seedlots in western Canada with genetically-engineered herbicide-resistance traits. Agronomy Journal, 2003,95(5):1342-1347.
doi: 10.2134/agronj2003.1342 |
[33] |
Andow D A, Zwahlen C . Assessing environmental risks of transgenic plants. Ecology Letters, 2006,9(2):196-214.
doi: 10.1111/j.1461-0248.2005.00846.x |
[34] |
Haxel G R . Rapid displacement of native species by invasive species:effects of hybridization. Critical Care Medicine, 1999,39(4):879-880.
doi: 10.1016/S0006-3207(98)00153-0 |
[35] |
Wolf D E, Takebayashi N, Rieseberg L H . Predicting the risk of extinction through hybridization. Conservation Biology, 2001,15(4):1039-1053.
doi: 10.1046/j.1523-1739.2001.0150041039.x |
[36] |
Levin D A, Franciseo-Ortega J, Jansen R K . Hybridization and the extinction of rare plants pecies. Conservation Biology, 1996,10(1):10-16.
doi: 10.1046/j.1523-1739.1996.10010010.x |
[37] |
Gealy D R, Mitten D H, Rutger J N . Gene flow between red rice (Oryza sativa) and herbicide-resistant rice (O. sativa):implications for weed management. Weed Technology, 2003,17(3):627-645.
doi: 10.1614/WT02-100 |
[38] |
Xia H, Lu B R, Su J , et al. Normal expression of insect-resistant transgene in progenies of common wild rice crossed with genetically modified rice:its implication in ecological biosafety assessment. Theoretical and Applied Genetics, 2009,119(4):635-644.
doi: 10.1007/s00122-009-1075-5 pmid: 19504082 |
[39] |
Van Deynze A E, Sundstrom F J, Bradford K J . Pollen-mediated gene flow in California cotton depends on pollinator activity. Crop Science, 2005,45(4):1565-1570.
doi: 10.2135/cropsci2004.0463 |
[40] |
Johnson P G, Larson S R, Anderton A L , et al. Pollen-mediated gene flow from Kentucky bluegrass under cultivated field conditions. Crop Science, 2006,46(5):1990-1997.
doi: 10.2135/cropsci2005.09.0316 |
[41] |
Chapman M A, Burke J M . Letting the gene out of the bottle:the population genetics of genetically modified crops. New Phytologist, 2006,170(3):429-443.
doi: 10.1111/j.1469-8137.2006.01710.x pmid: 16626466 |
[42] |
Yan S, Zhu W L, Zhang B Y , et al. Pollen-mediated gene flow from transgenic cotton is constrained by physical isolation measures. Scientific Reports, 2018,8:2862.
doi: 10.1038/s41598-018-21312-1 |
[43] |
Heuberger S, Ellers-Kirk C, Tabashnik B E , et al. Pollen- and seed-mediated transgene flow in commercial cotton seed production fields. PLoS ONE, 2010,5(11):e14128.
doi: 10.1371/journal.pone.0014128 pmid: 2994710 |
[44] |
Scorza R, Kriss A B, Callahan A M , et al. Spatial and temporal assessment of pollen- and seed-mediated gene flow from genetically engineered plum Prunus domestica. PLoS ONE, 2013,8(10):e75291.
doi: 10.1371/journal.pone.0075291 pmid: 3788040 |
[45] |
Llewellyn, D, Tyson C, Constable G ,et al. Containment of regulated genetically modified cotton in the field. Agriculture Ecosystems and Environment, 2007,121(4):419-429.
doi: 10.1016/j.agee.2006.11.019 |
[46] |
Daniell H, Kumar S, Dufourmantel N . Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends in Biotechnology, 2005,23(5):238-245.
doi: 10.1016/j.tibtech.2005.03.008 pmid: 3486632 |
[47] |
Grevich J J, Daniell H . Chloroplast genetic engineering:recent advances and future perspectives. Critical Reviews in Plant Sciences, 2005,24(2):83-107.
doi: 10.1080/07352680590935387 |
[48] |
Quesada-Vargas T, Ruiz O N, Daniell H . Characterization of heterologous multigene operons in transgenic chloroplasts. Plant Physiology, 2005,138(3):1746-1762.
doi: 10.1104/pp.105.063040 pmid: 15980187 |
[49] |
Daniell H, Datta R, Varma S , et al. Containment of herbicide resistance through genetic engineering of chloroplast genome. Nature Biotechnology, 1998,16(4):345-348.
doi: 10.1038/nbt0498-345 pmid: 5522713 |
[50] |
Ruf S, Hermann M, Berger I J , et al. Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nature Biotechnology, 2001,19(9):870-875.
doi: 10.1038/nbt0901-870 pmid: 11533648 |
[51] |
Haygood R A, Ives A R, Andow D A . Population genetics of transgene containment. Ecology Letters, 2004,7(3):213-220.
doi: 10.1111/j.1461-0248.2004.00575.x |
[52] | Wang T, Li Y, Shi Y , et al. Low frequency transmission of a plastid-encoded trait in setaria italic. Theoretical and Applied Genetics, 2004,108(2):315-320. |
[53] |
Azhagiri A K, Maliga P . Exceptional paternal inheritance of plastids in Arabidopsis suggests that low-frequency leakage of plastids via pollen may be universal in plants. Plant Journal for Cell and Molecular Biology, 2007,52(5):817-823.
doi: 10.1111/j.1365-313X.2007.03278.x pmid: 17931353 |
[54] |
Ruf S, Karcher D, Bock R . Determining the transgene containment level provided by chloroplast transformation. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(17):6998-7002.
doi: 10.1073/pnas.0700008104 pmid: 17420459 |
[55] |
Budar F, Touzet P, De Paepe R . The nucleomitochondrial conflict in cytoplasmic male sterilities revisited. Genetica, 2003,117(1):3-16.
doi: 10.1023/A:1022381016145 pmid: 12656568 |
[56] |
Chase C D . Cytoplasmic male sterility:a window to the world of plantmitochon-drial-nuclear interaction. Trends in Genetics, 2007,23(2):81-90.
doi: 10.1016/j.tig.2006.12.004 pmid: 17188396 |
[57] |
Weider C, Stamp P, Christov N , et al. Stability of cytoplasmic male sterility in maize under different environmental conditions. Crop Science, 2009,49(1):77-84.
doi: 10.2135/cropsci2007.12.0694 |
[58] |
Hvarleva T, Hristova M, Bakalova A , et al. CMS lines for evaluation of pollen flow in sunflower relevance for transgene flow mitigation. Biotechnology and Biotechnological Equipment, 2009,23(3):1309-1315.
doi: 10.1080/13102818.2009.10817659 |
[59] |
Latha R, Thiyagarajan K, Senthilvel S . Genetics,fertility behaviour and molecular marker analysis of a new TGMS line,TS6,in rice. Plant Breeding, 2004,123(3):235-240.
doi: 10.1111/pbr.2004.123.issue-3 |
[60] |
Sawhney V K . Photoperiod-sensitive male sterile mutant in tomato and its potential use in hybrid seed production. Journal of Horticultural Science and Biotechnology, 2004,79(1):138-141.
doi: 10.1080/14620316.2004.11511726 |
[61] |
Mlynárová L, Conner A, Nap J P . Directed microspore-specific recombination of transgenic alleles to prevent pollen-mediated transmission of transgenes. Plant Biotechnology Journal, 2006,4(4):445-452.
doi: 10.1111/j.1467-7652.2006.00194.x pmid: 17177809 |
[62] |
Gidoni D, Srivastava V, Carmi N . Site-specific excisional recombination strategies for elimination of undesirable transgenes from crop plants. In Vitro Cellular and Developmental Biology- Plant, 2008,44(6):457-467.
doi: 10.1007/s11627-008-9140-3 |
[63] |
Metz P L J, Jacobsen E, Nap J P , et al. The impact on biosafety of the phosphinothricin-tolerance transgene in inter-specific B. rapa×B. napus hybrids and their successive backcrosses. Theoretical and Applied Genetics, 1997,95(3):442-450.
doi: 10.1007/s001220050581 |
[64] |
Turuspekov Y, Honda I, Watanabe Y , et al. An inverted and micro-colinear genomic regions of rice and barley carrying the cly1 gene for cleistogamy. Breeding Science, 2009,59(5):657-663.
doi: 10.1270/jsbbs.59.657 |
[65] |
Benitez E R, Khan N A, Matsumura H , et al. Varietal differences and morphology of cleistogamy in soybean. Crop Science, 2010,50(1):185-190.
doi: 10.2134/jeq2006.0562 |
[66] |
Diaz A, MacNair M R . The effect of plant size on the expression of cleistogamy in Mimulus nasutus. Functional Ecology, 1998,12(1):92-98.
doi: 10.1046/j.1365-2435.1998.00170.x |
[67] |
Lu B R . Transgene containment by molecular means-is it possible and cost effective? Environmental Biosafety Research, 2003,2(1):3-8.
doi: 10.1051/ebr/2003000 pmid: 15615063 |
[68] |
Yoshida G, Itoh J I, Ohmori S , et al. Sperwoman-1-cleistogamy,a hopeful allele for gene containment in GM-rice. Plant Biotechnology Journal, 2007,5(6):835-846.
doi: 10.1111/pbi.2007.5.issue-6 |
[69] |
Gressel J . Tandem construct:preventing the rise of superweeds. Trends in Biotechnology, 1999,17(9):361-366.
doi: 10.1016/S0167-7799(99)01340-2 pmid: 10461182 |
[70] |
Al-Ahmad H, Galili S, Gressel J . Tandem constructs to mitigate transgene persistence:tobacco as a model. Molecular Ecology, 2004,13(3):697-710.
doi: 10.1046/j.1365-294X.2004.02092.x pmid: 14871372 |
[71] | 姚万军, 吴晗 . 我国应否将主粮转基因技术产业化?——基于一般均衡框架的经济学分析. 南开学报(哲学社会科学版), 2017(5):85-94. |
[72] | 孙卓婧, 张安红, 叶纪明 . 转基因作物研发现状及展望. 中国农业科技导报, 2018,20(7):11-18. |
[73] | 中国农村技术开发中心. 依托“七大农作物育种”专项实施,推进基因编辑技术发展和应用. 中国农业科技导报, 2018,20(8):155. |
[74] | 何晓丹, 陈琦琦, 展进涛 . 欧美等国基因组编辑生物安全管理政策及对中国的启示. 中国科技论坛, 2017(8):183-188. |
[1] | Yue Jiao,Wei Fu,Yong Zhai. Application of RNAi in Crop Breeding and Its Safety Assessment [J]. Crops, 2018, 34(1): 9-15. |
[2] | Yue Jiao,Jingang Liang,Yong Zhai. Progress in Safety Assessment of Genetically Modified Crops [J]. Crops, 2016, 32(5): 1-7. |
|