Crops ›› 2019, Vol. 35 ›› Issue (2): 1-7.doi: 10.16035/j.issn.1001-7283.2019.02.001

    Next Articles

Research Progress in Speed Breeding of Crops

Yudong Fang,Tianfu Han   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2019-01-26 Revised:2019-02-25 Online:2019-04-15 Published:2019-04-12
  • Contact: Tianfu Han

Abstract:

Shortening the growth cycles of progenies after crossing and accelerating the generation advancement are essential to improve efficiency of crops breeding. We analyzed the major environmental and genetic factors influencing the duration of growth cycle of crops and reviewed the latest progress in speed breeding by using optimum natural environmental conditions or artificial photothermal conditions. Moreover, we evaluated the value of the marker-assisted selection in the progress of speed breeding.

Key words: Crops, Generation advancement, Speed breeding, Marker-assisted selection

[1] 盖钧镒 . 作物育种学各论. 北京: 中国农业出版社, 2006: 10-12.
[2] Forster B P, Till B J, Ghanim A M A ,et al. Accelerated plant breeding. Cab Reviews, 2014,9:1-16.
[3] Foley J A, Ramankutty N, Brauman K A , et al. Solutions for a cultivated planet. Nature, 2011,478(7369):337-342.
doi: 10.1038/nature10452 pmid: 21993620
[4] Michael M . Book review-2052:A global forecast for the next forty years. Cadmus, 2012,1(5):1-20.
[5] Borthwick H A, Cathey H M . Significance of dark reversion of phytochrome in flowering of short-day plants. Science, 1962,136(3513):324-324.
doi: 10.1126/science.136.3513.324-b pmid: 17745911
[6] Washburn C F, Thomas J F . Reversion of flowering in Glycine max (Fabaceae). American Journal of Botany, 2000,87(10):1425-1438.
doi: 10.2307/2656869 pmid: 11034918
[7] 韩天富, 王金陵 . 大豆开花后光周期反应的研究. 植物学报, 2017(11):863-869.
[8] 韩天富, 王金陵 . 中国大豆不同生态类型开花至成熟期对光周期的反应. 作物学报, 1996,22(1):20-26.
[9] 韩天富, 王金陵, 范彬彬 , 等. 开花后光照长度对大豆农艺性状的影响. 应用生态学报, 1996,7(2):169-173.
doi: 10.1007/BF02951625
[10] Went F W . The effect of temperature on plant growth. Annual Review of Plant Physiology, 1953,4(1):347-362.
doi: 10.1146/annurev.pp.04.060153.002023
[11] 费志宏, 吴存祥, 孙洪波 , 等. 以光周期处理与分期播种试验综合鉴定大豆品种的光温反应. 作物学报, 2009,35(8):1525-1531.
doi: 10.3724/SP.J.1006.2009.01525
[12] Mao T, Li J, Wen Z , et al. Association mapping of loci controlling genetic and environmental interaction of soybean flowering time under various photo-thermal conditions. BMC Genomics, 2017,18(1):415.
doi: 10.1186/s12864-017-3778-3 pmid: 28549456
[13] Laurie D A . Comparative genetics of flowering time. Plant Molecular Biology, 1997,35:167-177.
doi: 10.1023/A:1005726329248 pmid: 9291970
[14] Kang M Y, Yoo S C, Kwon H Y , et al. Negative regulatory roles of DE-ETIOLATED1 in flowering time in Arabidopsis. Scientific Reports, 2015,5:9728.
doi: 10.1038/srep09728 pmid: 4428065
[15] Golembeski G S, Imaizumi T . Photoperiodic regulation of florigen function in Arabidopsis thaliana. Arabidopsis Book, 2015,13:e0178.
doi: 10.1199/tab.0178 pmid: 26157354
[16] Xu F, Rong X, Huang X , et al. Recent advances of flowering locus T gene in higher plants. International Journal of Molecular Sciences, 2012,13(3):3773-3781.
doi: 10.3390/ijms13033773
[17] Levy Y Y, Dean C . The transition to flowering. Plant Cell, 1998,10(12):1973-1990.
doi: 10.1105/tpc.10.12.1973
[18] Hayama R, Coupland G . The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiology, 2004,135(2):677-684.
doi: 10.1104/pp.104.042614 pmid: 15208414
[19] Marshall C M, Tartaglio V, Duarte M , et al. The Arabidopsis sickle mutant exhibits altered circadian clock responses to cool temperatures and temperature-dependent alternative splicing. Plant Cell, 2016,28(10):2560-2575.
doi: 10.1105/tpc.16.00223 pmid: 27624757
[20] Nusinow D A, Helfer A, Hamilton E E , et al. The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature, 2012,475(7356):398-402.
doi: 10.1038/nature10182 pmid: 3155984
[21] Khaleda L, Cha J Y, Min G K , et al. Production and characterization of polyclonal antibody against Arabidopsis GIGANTEA,a circadian clock controlled flowering time regulator. Journal of Plant Biology, 2017,60(6):622-629.
doi: 10.1007/s12374-017-0305-7
[22] Shi J, Dong A, Shen W H . Epigenetic regulation of rice flowering and reproduction. Frontiers in Plant Science, 2015,5:803.
doi: 10.3389/fpls.2014.00803 pmid: 25674094
[23] Liu W, Jiang B, Ma L , et al. Functional diversification of Flowering Locus T homologs in soybean:GmFT1a and GmFT2a/5a have opposite roles in controlling flowering and maturation. New Phytologist, 2017,217(3):1335-1345.
doi: 10.1111/nph.14884 pmid: 29120038
[24] Kobayashi Y, Weigel D . Move on up,it's time for change-mobile signals controlling photoperiod-dependent flowering. Genes and Development, 2007,21(19):2371-2384.
doi: 10.1101/gad.1589007 pmid: 17908925
[25] Srikanth A, Schmid M . Regulation of flowering time:all roads lead to Rome. Cellular and Molecular Life Sciences, 2011,68(12):2013-2037.
doi: 10.1007/s00018-011-0673-y pmid: 21611891
[26] Tanaka C, Itoh T, Iwasaki Y , et al. Direct interaction between VRN1 protein and the promoter region of the wheat FT gene. Genes and Genetic Systems, 2018,93(1):25-29.
doi: 10.1266/ggs.17-00041 pmid: 29343669
[27] Woods D, Mckeown M, Dong Y , et al. Evolution of VRN2/GhD7-like genes in vernalization-mediated repression of grass flowering. Plant Physiology, 2016,170(4):2124-2135.
doi: 10.1104/pp.15.01279 pmid: 26848096
[28] Wilson R N, Heckman J W, Somerville C R . Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiology, 1992,100(1):403-408.
doi: 10.1104/pp.100.1.403
[29] Carolina G G, Hu J, Urbez C , et al. Role of the gibberellin receptors GID1 during fruit‐set in Arabidopsis. Plant Journal, 2015,79(6):1020-1032.
doi: 10.1111/tpj.12603 pmid: 24961590
[30] Hisamatsu T, King R W . The nature of floral signals in Arabidopsis.Ⅱ.Roles for FLOWERING LOCUS T (FT) and gibberellin. Journal of Experiment Botany, 2008,59(14):3821-3829.
doi: 10.1093/jxb/ern232 pmid: 2576629
[31] Cheng J Z, Zhou Y P, Lv T X , et al. Research progress on the autonomous flowering time pathway in Arabidopsis. Physiology and Molecular Biology of Plants, 2017,23(3):1-9.
doi: 10.1007/s12298-017-0420-4 pmid: 28250579
[32] 吴绍骙 . 异地培育玉米自交系在生产上利用可能性的研究. 河南农学院学报, 2017(1):16-40.
[33] 刘发, 张乃发 . 对大豆南繁工作的总结与建议. 大豆科技, 2017(3):5.
[34] 周月光 . 杂交水稻一半功劳归南繁 . 海南日报, 2013 -04-26(T24).
[35] 吕青, 柯用春, 何志军 , 等. 南繁制种水稻基地现状以及问题分析. 农村经济与科技, 2017,28(20):24-25.
doi: 10.3969/j.issn.1007-7103.2017.20.018
[36] Normane B . Sixty-two years of fighting hunger:personal recollections. Euphytica, 2007,157(3):287-297.
doi: 10.1007/s10681-007-9480-9
[37] Kothari N, Hague S S, Frelichowski J , et al. Breeding and genetics:Utilization of cotton germplasm in the winter nursery at Tecoman,Mexico for plant breeding training and research. Journal of Cotton Science, 2011,15(3):271-273.
[38] 常从云, 韩天富 . 鼓粒期大豆种子的发芽力. 作物杂志, 2017(5):6-8.
doi: 10.3969/j.issn.1001-7283.2000.05.002
[39] 王仪春, 梁帅强, 王云华 , 等. 收获期对糯质玉米种子活力及呼吸代谢的影响. 浙江农业学报, 2016,28(6):910-914.
doi: 10.3969/j.issn.1004-1524.2016.06.02
[40] 蓝希骞, 蒋作甫, 谢皓 . 北京地区玉米就地加代技术的初步研究. 北京农学院学报, 2017(2):15-17.
[41] 王元 . 玉米一年两熟就地加代. 河南农业科学, 2017(1):15-17.
[42] 徐延基 . 加速玉米自交系繁殖途径的研究. 种子世界, 2017(1):26-27.
[43] Watson A, Ghosh S, Williams M J , et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants, 2018,4(1):23-29.
doi: 10.1038/s41477-017-0083-8 pmid: 29292376
[44] 王海波, 王彦霞, 赵和 . 如何加快作物遗传改良的速度. 河北农业科学, 2003,7(3):50-56.
doi: 10.3969/j.issn.1088-1631.2003.03.009
[45] 张莉, 张春荣, 岳竞之 , 等. 玉米一年繁育三代技术的研究. 农业科技通讯, 2017(5):46-48.
doi: 10.3969/j.issn.1000-6400.2009.05.022
[46] 王国胜, 陈举林, 侯玮 , 等. 玉米自交系一年三代选育模式研究. 现代农业科技, 2017(4):86.
doi: 10.3969/j.issn.1007-5739.2011.04.050
[47] 李峰, 王云鹏, 于立娜 , 等. 玉米自交系一年三代种植与选育技术研究. 中国农学通报, 2016,32(33):64-69.
[48] Sysoeva M I, Markovskaya E F, Shibaeva T G . Plants under continuous light:A review. Plant Stress, 2010,4(1):5-17.
[49] Ochatt S J, Sangwan R S, Marget P , et al. New approaches towards the shortening of generation cycles for faster breeding of protein legumes. Plant Breeding, 2002,121(5):436-440.
doi: 10.1046/j.1439-0523.2002.746803.x
[50] O'Connor D J, Wright G C,Dieters M J ,et al. Development and application of speed breeding technologies in a commercial peanut breeding program. Peanut Science, 2013,40(2):107-114.
doi: 10.3146/PS12-12.1
[51] Williams P H, Hill C B . Rapid-cycling populations of Brassica. American Association for the Advancement of Science, 2013,232(4756):1385-1389.
[52] Zheng Z, Wang H, Chen G , et al. A procedure allowing up to eight generations of wheat and nine generations of barley per annum. Euphytica, 2013,191(2):311-316.
doi: 10.1007/s10681-013-0909-z
[53] Mobini S H, Warkentin T D . A simple and efficient method of in vivo rapid generation technology in pea (Pisum sativum L.). In Vitro Cellular & Developmental Biology-Plant, 2016,52:530-536.
doi: 10.1007/s11627-016-9772-7
[54] Yao Y, Zhang P, Wang H B , et al. How to advance up to seven generations of canola (Brassica napus L.) per annum for the production of pure line populations? Euphytica, 2016,209(1):1-7.
doi: 10.1007/s10681-016-1646-x
[55] Stetter M G, Leo Z, Adrian S , et al. Crossing methods and cultivation conditions for rapid production of segregating populations in three grain amaranth species. Frontiers in Plant Science, 2016,7(816):1-8.
doi: 10.3389/fpls.2016.00816 pmid: 4894896
[56] 孙以美 . 大豆就地一年四代种植研究总结. 安徽农业科学, 1982,1(12):61-67.
[57] Tanaka J, Hayashi T, Iwata H . A practical,rapid generation-advancement system for rice breeding using simplified biotron breeding system. Breeding Science, 2016,66(4):542-551.
doi: 10.1270/jsbbs.15038 pmid: 27795679
[58] Nagatoshi Y, Fujita Y . Accelerating soybean breeding in a CO2-supplemented growth chamber. Plant and Cell Physiology, 2019,60(1):77-84.
doi: 10.1093/pcp/pcy189
[59] Liu H, Zwer P, Wang H , et al. A fast generation cycling system for oat and triticale breeding. Plant Breeding, 2016,135(5):574-579.
doi: 10.1111/pbr.12408
[60] Roumet P, Morin F . Germination of immature soybean seeds to shorten reproductive cycle duration. Crop Science, 1997,37(2):521-525.
doi: 10.2135/cropsci1997.0011183X003700020035x
[61] 王海波, 谢晓亮, 孙国忠 , 等 . 一年多代的植物快速育种技术:中国, 99100489.2. 2004 -09-22.
[62] Wang X, Wang Y, Zhang G , et al. An integrated breeding technology for accelerating generation advancement and trait introgression in cotton. Plant Breeding, 2011,130(5):569-573.
doi: 10.1111/j.1439-0523.2011.01868.x
[63] Rizal G, Karki S, Alcasid M , et al. Shortening the breeding cycle of sorghum,a model crop for research. Crop Science, 2014,54(2):520-529.
doi: 10.2135/cropsci2013.07.0471
[64] Rahman M, Jiménez M M D . Behind the scenes of microspore-based double haploid development in Brassica napus:A review. Journal of Plant Science & Molecular Breeding, 2016,5(1):1-9.
[65] Germanà M A . Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Reports, 2011,30(5):839-857.
doi: 10.1007/s00299-011-1061-7 pmid: 21431908
[66] Yan G, Liu H, Wang H , et al. Accelerated generation of selfed pure line plants for gene identification and crop breeding. Frontiers in Plant Science, 2017,8:1786.
doi: 10.3389/fpls.2017.01786 pmid: 29114254
[67] Dwivedi S L, Britt A B, Tripathi L , et al. Haploids:Constraints and opportunities in plant breeding. Biotechnology Advances, 2015,33(6):812-829.
doi: 10.1016/j.biotechadv.2015.07.001 pmid: 26165969
[68] 费志宏, 贾贞, 冷建田 , 等. 不同生态类型大豆品种光周期反应的鉴定. 作物杂志, 2017(4):46-49.
[69] Riaz A, Periyannan S, Aitken E , et al. A rapid phenotyping method for adult plant resistance to leaf rust in wheat. Plant Methods, 2016,12(17):1-10.
doi: 10.1186/s13007-016-0102-1
[70] Shakoor N, Lee S, Mockler T C . High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Current Opinion in Plant Biology, 2017,38:184.
doi: 10.1016/j.pbi.2017.05.006 pmid: 28738313
[71] Tanger P, Klassen S, Mojica J P , et al. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice. Scientific Reports, 2017,7:42839.
doi: 10.1038/srep42839 pmid: 5318881
[72] Mayo O, 张发成. 自花授粉作物育种中选择方法的比较. 北京农业科技, 1981,1(4):11-13.
[73] Crossa J, Pérezrodríguez P, Cuevas J , et al. Genomic selection in plant breeding:methods,models,and perspectives. Trends in Plant Science, 2017,22(11):961-975.
doi: 10.1016/j.tplants.2017.08.011 pmid: 28965742
[74] Hickey L T, Dieters M J, Delacy I H , et al. Screening for grain dormancy in segregating generations of dormant×non-dormant crosses in white-grained wheat (Triticum aestivum L.). Euphytica, 2010,172:183-195.
doi: 10.1007/s10681-009-0028-z
[75] Christopher J, Richard C, Chenu K , et al. Integrating rapid phenotyping and speed breeding to improve stay-green and root adaptation of wheat in changing,water-limited,Australian environments. Procedia Environmental Sciences, 2015,29(2):175-176.
doi: 10.1016/j.proenv.2015.07.246
[76] Wang X, Xu Y, Hu Z , et al. Genomic selection methods for crop improvement:Current status and prospects. The Crop Journal, 2018,6(4):330-340.
doi: 10.1016/j.cj.2018.03.001
[77] Jarquín D, Kocak K, Posadas L , et al. Genotyping by sequencing for genomic prediction in a soybean breeding population. BMC Genomics, 2014,15(1):740.
doi: 10.1186/1471-2164-15-740 pmid: 25174348
[78] Xu S Z, Zhu D, Zhang Q F . Predicting hybrid performance in rice using genomic best linear unbiased prediction. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(34):12456-12461.
doi: 10.1073/pnas.1413750111 pmid: 25114224
[79] Daetwyler H D, Bansal U K, Bariana H S , et al. Genomic prediction for rust resistance in diverse wheat landraces. Theoretical & Applied Genetics, 2014,127(8):1795-1803.
doi: 10.1007/s00122-014-2341-8 pmid: 24965887
[80] Andersen J R, Lübberstedt T . Functional markers in plants. Trends in Plant Science, 2003,8(11):554-560.
doi: 10.1016/j.tplants.2003.09.010
[81] 韩天富, 房裕东, 孙石 , 等 . 一种采用异地夏繁加代加快大豆育种进程的方法:中国, 201711365797.5. 2017 -12-18.
[1] Zheng Zhang,Yinquan Niu,Dong Zhang,Chengmei Hu,Yichuan Yuan,Huiyan Wang,Shuguang Wang,Yaping Cao,Daizhen Sun. Genome-Wide Association Analysis of Wheat at Heading and Flowering Stages [J]. Crops, 2019, 35(1): 44-49.
[2] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops [J]. Crops, 2018, 34(4): 13-19.
[3] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production [J]. Crops, 2018, 34(4): 1-7.
[4] Yue Jiao,Wei Fu,Yong Zhai. Application of RNAi in Crop Breeding and Its Safety Assessment [J]. Crops, 2018, 34(1): 9-15.
[5] Li Song,Wanyou Liao,Yejun Wang,Youjian Su,Yongli Zhang,Yi Luo,Jun Liao,Weiguo Wu. Research Progress in Intercropping Upland Crops with Green Manure [J]. Crops, 2017, 33(6): 7-11.
[6] Changhui Feng,Youchang Zhang,Shu Bie,Jiaohai Zhang,Xiaogang Wang,Songbo Xia,Cheng Zhang,Hongde Qin. Research Progress on Improvement for Verticillium Wilt Resistance by Molecular Marker-Assisted Selection in Cotton [J]. Crops, 2017, 33(5): 21-25.
[7] Yanmin Li,Xiantao Qi,Changlin Liu,Fang Liu,Chuanxiao Xie. Progress of Crop Breeding on Resistance to Herbicides [J]. Crops, 2017, 33(2): 1-6.
[8] Hao Zhang,Jianchang Yang. Water-Saving Irrigation Techniques of Three Major Food Crops and Their Effects on Grain Yield and Water Use Efficiency [J]. Crops, 2016, 32(5): 67-74.
[9] Dongling Qin,Zhao Li,Juping Yu,Wenyi Yang,Bing Bai,Yulong Liu,Qian Zhang,Deguang Yang. Progress on Cold Resistance and Chemical Control Mechanism of Crops [J]. Crops, 2016, 32(4): 26-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Ruiqi Ma,Zhen Qi,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yushuang Yang,Jinfeng Feng,Min Sun,Guangcai Zhao. Regulation Effects of Growth Regulators on Plant Characters, Yield and Quality of Winter Wheat[J]. Crops, 2018, 34(1): 133 -140 .
[5] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[6] Hongyan Li,Yonghong Wang,Rulang Zhao,Wenjie Zhang,Bo Ming,Ruizhi Xie,Keru Wang,Lulu Li,Shang Gao,Shaokun Li. The Construction and Application of Maize Grain Dehydration Model in Yellow River Irrigation and Pumping Irrigation District in Ningxia[J]. Crops, 2018, 34(4): 149 -153 .
[7] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[8] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[9] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[10] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .