Crops ›› 2019, Vol. 35 ›› Issue (2): 1-7.doi: 10.16035/j.issn.1001-7283.2019.02.001
Yudong Fang,Tianfu Han
[1] | 盖钧镒 . 作物育种学各论. 北京: 中国农业出版社, 2006: 10-12. |
[2] | Forster B P, Till B J, Ghanim A M A ,et al. Accelerated plant breeding. Cab Reviews, 2014,9:1-16. |
[3] |
Foley J A, Ramankutty N, Brauman K A , et al. Solutions for a cultivated planet. Nature, 2011,478(7369):337-342.
doi: 10.1038/nature10452 pmid: 21993620 |
[4] | Michael M . Book review-2052:A global forecast for the next forty years. Cadmus, 2012,1(5):1-20. |
[5] |
Borthwick H A, Cathey H M . Significance of dark reversion of phytochrome in flowering of short-day plants. Science, 1962,136(3513):324-324.
doi: 10.1126/science.136.3513.324-b pmid: 17745911 |
[6] |
Washburn C F, Thomas J F . Reversion of flowering in Glycine max (Fabaceae). American Journal of Botany, 2000,87(10):1425-1438.
doi: 10.2307/2656869 pmid: 11034918 |
[7] | 韩天富, 王金陵 . 大豆开花后光周期反应的研究. 植物学报, 2017(11):863-869. |
[8] | 韩天富, 王金陵 . 中国大豆不同生态类型开花至成熟期对光周期的反应. 作物学报, 1996,22(1):20-26. |
[9] |
韩天富, 王金陵, 范彬彬 , 等. 开花后光照长度对大豆农艺性状的影响. 应用生态学报, 1996,7(2):169-173.
doi: 10.1007/BF02951625 |
[10] |
Went F W . The effect of temperature on plant growth. Annual Review of Plant Physiology, 1953,4(1):347-362.
doi: 10.1146/annurev.pp.04.060153.002023 |
[11] |
费志宏, 吴存祥, 孙洪波 , 等. 以光周期处理与分期播种试验综合鉴定大豆品种的光温反应. 作物学报, 2009,35(8):1525-1531.
doi: 10.3724/SP.J.1006.2009.01525 |
[12] |
Mao T, Li J, Wen Z , et al. Association mapping of loci controlling genetic and environmental interaction of soybean flowering time under various photo-thermal conditions. BMC Genomics, 2017,18(1):415.
doi: 10.1186/s12864-017-3778-3 pmid: 28549456 |
[13] |
Laurie D A . Comparative genetics of flowering time. Plant Molecular Biology, 1997,35:167-177.
doi: 10.1023/A:1005726329248 pmid: 9291970 |
[14] |
Kang M Y, Yoo S C, Kwon H Y , et al. Negative regulatory roles of DE-ETIOLATED1 in flowering time in Arabidopsis. Scientific Reports, 2015,5:9728.
doi: 10.1038/srep09728 pmid: 4428065 |
[15] |
Golembeski G S, Imaizumi T . Photoperiodic regulation of florigen function in Arabidopsis thaliana. Arabidopsis Book, 2015,13:e0178.
doi: 10.1199/tab.0178 pmid: 26157354 |
[16] |
Xu F, Rong X, Huang X , et al. Recent advances of flowering locus T gene in higher plants. International Journal of Molecular Sciences, 2012,13(3):3773-3781.
doi: 10.3390/ijms13033773 |
[17] |
Levy Y Y, Dean C . The transition to flowering. Plant Cell, 1998,10(12):1973-1990.
doi: 10.1105/tpc.10.12.1973 |
[18] |
Hayama R, Coupland G . The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice. Plant Physiology, 2004,135(2):677-684.
doi: 10.1104/pp.104.042614 pmid: 15208414 |
[19] |
Marshall C M, Tartaglio V, Duarte M , et al. The Arabidopsis sickle mutant exhibits altered circadian clock responses to cool temperatures and temperature-dependent alternative splicing. Plant Cell, 2016,28(10):2560-2575.
doi: 10.1105/tpc.16.00223 pmid: 27624757 |
[20] |
Nusinow D A, Helfer A, Hamilton E E , et al. The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature, 2012,475(7356):398-402.
doi: 10.1038/nature10182 pmid: 3155984 |
[21] |
Khaleda L, Cha J Y, Min G K , et al. Production and characterization of polyclonal antibody against Arabidopsis GIGANTEA,a circadian clock controlled flowering time regulator. Journal of Plant Biology, 2017,60(6):622-629.
doi: 10.1007/s12374-017-0305-7 |
[22] |
Shi J, Dong A, Shen W H . Epigenetic regulation of rice flowering and reproduction. Frontiers in Plant Science, 2015,5:803.
doi: 10.3389/fpls.2014.00803 pmid: 25674094 |
[23] |
Liu W, Jiang B, Ma L , et al. Functional diversification of Flowering Locus T homologs in soybean:GmFT1a and GmFT2a/5a have opposite roles in controlling flowering and maturation. New Phytologist, 2017,217(3):1335-1345.
doi: 10.1111/nph.14884 pmid: 29120038 |
[24] |
Kobayashi Y, Weigel D . Move on up,it's time for change-mobile signals controlling photoperiod-dependent flowering. Genes and Development, 2007,21(19):2371-2384.
doi: 10.1101/gad.1589007 pmid: 17908925 |
[25] |
Srikanth A, Schmid M . Regulation of flowering time:all roads lead to Rome. Cellular and Molecular Life Sciences, 2011,68(12):2013-2037.
doi: 10.1007/s00018-011-0673-y pmid: 21611891 |
[26] |
Tanaka C, Itoh T, Iwasaki Y , et al. Direct interaction between VRN1 protein and the promoter region of the wheat FT gene. Genes and Genetic Systems, 2018,93(1):25-29.
doi: 10.1266/ggs.17-00041 pmid: 29343669 |
[27] |
Woods D, Mckeown M, Dong Y , et al. Evolution of VRN2/GhD7-like genes in vernalization-mediated repression of grass flowering. Plant Physiology, 2016,170(4):2124-2135.
doi: 10.1104/pp.15.01279 pmid: 26848096 |
[28] |
Wilson R N, Heckman J W, Somerville C R . Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiology, 1992,100(1):403-408.
doi: 10.1104/pp.100.1.403 |
[29] |
Carolina G G, Hu J, Urbez C , et al. Role of the gibberellin receptors GID1 during fruit‐set in Arabidopsis. Plant Journal, 2015,79(6):1020-1032.
doi: 10.1111/tpj.12603 pmid: 24961590 |
[30] |
Hisamatsu T, King R W . The nature of floral signals in Arabidopsis.Ⅱ.Roles for FLOWERING LOCUS T (FT) and gibberellin. Journal of Experiment Botany, 2008,59(14):3821-3829.
doi: 10.1093/jxb/ern232 pmid: 2576629 |
[31] |
Cheng J Z, Zhou Y P, Lv T X , et al. Research progress on the autonomous flowering time pathway in Arabidopsis. Physiology and Molecular Biology of Plants, 2017,23(3):1-9.
doi: 10.1007/s12298-017-0420-4 pmid: 28250579 |
[32] | 吴绍骙 . 异地培育玉米自交系在生产上利用可能性的研究. 河南农学院学报, 2017(1):16-40. |
[33] | 刘发, 张乃发 . 对大豆南繁工作的总结与建议. 大豆科技, 2017(3):5. |
[34] | 周月光 . 杂交水稻一半功劳归南繁 . 海南日报, 2013 -04-26(T24). |
[35] |
吕青, 柯用春, 何志军 , 等. 南繁制种水稻基地现状以及问题分析. 农村经济与科技, 2017,28(20):24-25.
doi: 10.3969/j.issn.1007-7103.2017.20.018 |
[36] |
Normane B . Sixty-two years of fighting hunger:personal recollections. Euphytica, 2007,157(3):287-297.
doi: 10.1007/s10681-007-9480-9 |
[37] | Kothari N, Hague S S, Frelichowski J , et al. Breeding and genetics:Utilization of cotton germplasm in the winter nursery at Tecoman,Mexico for plant breeding training and research. Journal of Cotton Science, 2011,15(3):271-273. |
[38] |
常从云, 韩天富 . 鼓粒期大豆种子的发芽力. 作物杂志, 2017(5):6-8.
doi: 10.3969/j.issn.1001-7283.2000.05.002 |
[39] |
王仪春, 梁帅强, 王云华 , 等. 收获期对糯质玉米种子活力及呼吸代谢的影响. 浙江农业学报, 2016,28(6):910-914.
doi: 10.3969/j.issn.1004-1524.2016.06.02 |
[40] | 蓝希骞, 蒋作甫, 谢皓 . 北京地区玉米就地加代技术的初步研究. 北京农学院学报, 2017(2):15-17. |
[41] | 王元 . 玉米一年两熟就地加代. 河南农业科学, 2017(1):15-17. |
[42] | 徐延基 . 加速玉米自交系繁殖途径的研究. 种子世界, 2017(1):26-27. |
[43] |
Watson A, Ghosh S, Williams M J , et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants, 2018,4(1):23-29.
doi: 10.1038/s41477-017-0083-8 pmid: 29292376 |
[44] |
王海波, 王彦霞, 赵和 . 如何加快作物遗传改良的速度. 河北农业科学, 2003,7(3):50-56.
doi: 10.3969/j.issn.1088-1631.2003.03.009 |
[45] |
张莉, 张春荣, 岳竞之 , 等. 玉米一年繁育三代技术的研究. 农业科技通讯, 2017(5):46-48.
doi: 10.3969/j.issn.1000-6400.2009.05.022 |
[46] |
王国胜, 陈举林, 侯玮 , 等. 玉米自交系一年三代选育模式研究. 现代农业科技, 2017(4):86.
doi: 10.3969/j.issn.1007-5739.2011.04.050 |
[47] | 李峰, 王云鹏, 于立娜 , 等. 玉米自交系一年三代种植与选育技术研究. 中国农学通报, 2016,32(33):64-69. |
[48] | Sysoeva M I, Markovskaya E F, Shibaeva T G . Plants under continuous light:A review. Plant Stress, 2010,4(1):5-17. |
[49] |
Ochatt S J, Sangwan R S, Marget P , et al. New approaches towards the shortening of generation cycles for faster breeding of protein legumes. Plant Breeding, 2002,121(5):436-440.
doi: 10.1046/j.1439-0523.2002.746803.x |
[50] |
O'Connor D J, Wright G C,Dieters M J ,et al. Development and application of speed breeding technologies in a commercial peanut breeding program. Peanut Science, 2013,40(2):107-114.
doi: 10.3146/PS12-12.1 |
[51] | Williams P H, Hill C B . Rapid-cycling populations of Brassica. American Association for the Advancement of Science, 2013,232(4756):1385-1389. |
[52] |
Zheng Z, Wang H, Chen G , et al. A procedure allowing up to eight generations of wheat and nine generations of barley per annum. Euphytica, 2013,191(2):311-316.
doi: 10.1007/s10681-013-0909-z |
[53] |
Mobini S H, Warkentin T D . A simple and efficient method of in vivo rapid generation technology in pea (Pisum sativum L.). In Vitro Cellular & Developmental Biology-Plant, 2016,52:530-536.
doi: 10.1007/s11627-016-9772-7 |
[54] |
Yao Y, Zhang P, Wang H B , et al. How to advance up to seven generations of canola (Brassica napus L.) per annum for the production of pure line populations? Euphytica, 2016,209(1):1-7.
doi: 10.1007/s10681-016-1646-x |
[55] |
Stetter M G, Leo Z, Adrian S , et al. Crossing methods and cultivation conditions for rapid production of segregating populations in three grain amaranth species. Frontiers in Plant Science, 2016,7(816):1-8.
doi: 10.3389/fpls.2016.00816 pmid: 4894896 |
[56] | 孙以美 . 大豆就地一年四代种植研究总结. 安徽农业科学, 1982,1(12):61-67. |
[57] |
Tanaka J, Hayashi T, Iwata H . A practical,rapid generation-advancement system for rice breeding using simplified biotron breeding system. Breeding Science, 2016,66(4):542-551.
doi: 10.1270/jsbbs.15038 pmid: 27795679 |
[58] |
Nagatoshi Y, Fujita Y . Accelerating soybean breeding in a CO2-supplemented growth chamber. Plant and Cell Physiology, 2019,60(1):77-84.
doi: 10.1093/pcp/pcy189 |
[59] |
Liu H, Zwer P, Wang H , et al. A fast generation cycling system for oat and triticale breeding. Plant Breeding, 2016,135(5):574-579.
doi: 10.1111/pbr.12408 |
[60] |
Roumet P, Morin F . Germination of immature soybean seeds to shorten reproductive cycle duration. Crop Science, 1997,37(2):521-525.
doi: 10.2135/cropsci1997.0011183X003700020035x |
[61] | 王海波, 谢晓亮, 孙国忠 , 等 . 一年多代的植物快速育种技术:中国, 99100489.2. 2004 -09-22. |
[62] |
Wang X, Wang Y, Zhang G , et al. An integrated breeding technology for accelerating generation advancement and trait introgression in cotton. Plant Breeding, 2011,130(5):569-573.
doi: 10.1111/j.1439-0523.2011.01868.x |
[63] |
Rizal G, Karki S, Alcasid M , et al. Shortening the breeding cycle of sorghum,a model crop for research. Crop Science, 2014,54(2):520-529.
doi: 10.2135/cropsci2013.07.0471 |
[64] | Rahman M, Jiménez M M D . Behind the scenes of microspore-based double haploid development in Brassica napus:A review. Journal of Plant Science & Molecular Breeding, 2016,5(1):1-9. |
[65] |
Germanà M A . Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Reports, 2011,30(5):839-857.
doi: 10.1007/s00299-011-1061-7 pmid: 21431908 |
[66] |
Yan G, Liu H, Wang H , et al. Accelerated generation of selfed pure line plants for gene identification and crop breeding. Frontiers in Plant Science, 2017,8:1786.
doi: 10.3389/fpls.2017.01786 pmid: 29114254 |
[67] |
Dwivedi S L, Britt A B, Tripathi L , et al. Haploids:Constraints and opportunities in plant breeding. Biotechnology Advances, 2015,33(6):812-829.
doi: 10.1016/j.biotechadv.2015.07.001 pmid: 26165969 |
[68] | 费志宏, 贾贞, 冷建田 , 等. 不同生态类型大豆品种光周期反应的鉴定. 作物杂志, 2017(4):46-49. |
[69] |
Riaz A, Periyannan S, Aitken E , et al. A rapid phenotyping method for adult plant resistance to leaf rust in wheat. Plant Methods, 2016,12(17):1-10.
doi: 10.1186/s13007-016-0102-1 |
[70] |
Shakoor N, Lee S, Mockler T C . High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Current Opinion in Plant Biology, 2017,38:184.
doi: 10.1016/j.pbi.2017.05.006 pmid: 28738313 |
[71] |
Tanger P, Klassen S, Mojica J P , et al. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice. Scientific Reports, 2017,7:42839.
doi: 10.1038/srep42839 pmid: 5318881 |
[72] | Mayo O, 张发成. 自花授粉作物育种中选择方法的比较. 北京农业科技, 1981,1(4):11-13. |
[73] |
Crossa J, Pérezrodríguez P, Cuevas J , et al. Genomic selection in plant breeding:methods,models,and perspectives. Trends in Plant Science, 2017,22(11):961-975.
doi: 10.1016/j.tplants.2017.08.011 pmid: 28965742 |
[74] |
Hickey L T, Dieters M J, Delacy I H , et al. Screening for grain dormancy in segregating generations of dormant×non-dormant crosses in white-grained wheat (Triticum aestivum L.). Euphytica, 2010,172:183-195.
doi: 10.1007/s10681-009-0028-z |
[75] |
Christopher J, Richard C, Chenu K , et al. Integrating rapid phenotyping and speed breeding to improve stay-green and root adaptation of wheat in changing,water-limited,Australian environments. Procedia Environmental Sciences, 2015,29(2):175-176.
doi: 10.1016/j.proenv.2015.07.246 |
[76] |
Wang X, Xu Y, Hu Z , et al. Genomic selection methods for crop improvement:Current status and prospects. The Crop Journal, 2018,6(4):330-340.
doi: 10.1016/j.cj.2018.03.001 |
[77] |
Jarquín D, Kocak K, Posadas L , et al. Genotyping by sequencing for genomic prediction in a soybean breeding population. BMC Genomics, 2014,15(1):740.
doi: 10.1186/1471-2164-15-740 pmid: 25174348 |
[78] |
Xu S Z, Zhu D, Zhang Q F . Predicting hybrid performance in rice using genomic best linear unbiased prediction. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(34):12456-12461.
doi: 10.1073/pnas.1413750111 pmid: 25114224 |
[79] |
Daetwyler H D, Bansal U K, Bariana H S , et al. Genomic prediction for rust resistance in diverse wheat landraces. Theoretical & Applied Genetics, 2014,127(8):1795-1803.
doi: 10.1007/s00122-014-2341-8 pmid: 24965887 |
[80] |
Andersen J R, Lübberstedt T . Functional markers in plants. Trends in Plant Science, 2003,8(11):554-560.
doi: 10.1016/j.tplants.2003.09.010 |
[81] | 韩天富, 房裕东, 孙石 , 等 . 一种采用异地夏繁加代加快大豆育种进程的方法:中国, 201711365797.5. 2017 -12-18. |
[1] | Zheng Zhang,Yinquan Niu,Dong Zhang,Chengmei Hu,Yichuan Yuan,Huiyan Wang,Shuguang Wang,Yaping Cao,Daizhen Sun. Genome-Wide Association Analysis of Wheat at Heading and Flowering Stages [J]. Crops, 2019, 35(1): 44-49. |
[2] | Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops [J]. Crops, 2018, 34(4): 13-19. |
[3] | Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production [J]. Crops, 2018, 34(4): 1-7. |
[4] | Yue Jiao,Wei Fu,Yong Zhai. Application of RNAi in Crop Breeding and Its Safety Assessment [J]. Crops, 2018, 34(1): 9-15. |
[5] | Li Song,Wanyou Liao,Yejun Wang,Youjian Su,Yongli Zhang,Yi Luo,Jun Liao,Weiguo Wu. Research Progress in Intercropping Upland Crops with Green Manure [J]. Crops, 2017, 33(6): 7-11. |
[6] | Changhui Feng,Youchang Zhang,Shu Bie,Jiaohai Zhang,Xiaogang Wang,Songbo Xia,Cheng Zhang,Hongde Qin. Research Progress on Improvement for Verticillium Wilt Resistance by Molecular Marker-Assisted Selection in Cotton [J]. Crops, 2017, 33(5): 21-25. |
[7] | Yanmin Li,Xiantao Qi,Changlin Liu,Fang Liu,Chuanxiao Xie. Progress of Crop Breeding on Resistance to Herbicides [J]. Crops, 2017, 33(2): 1-6. |
[8] | Hao Zhang,Jianchang Yang. Water-Saving Irrigation Techniques of Three Major Food Crops and Their Effects on Grain Yield and Water Use Efficiency [J]. Crops, 2016, 32(5): 67-74. |
[9] | Dongling Qin,Zhao Li,Juping Yu,Wenyi Yang,Bing Bai,Yulong Liu,Qian Zhang,Deguang Yang. Progress on Cold Resistance and Chemical Control Mechanism of Crops [J]. Crops, 2016, 32(4): 26-35. |
|