Crops ›› 2019, Vol. 35 ›› Issue (3): 126-131.doi: 10.16035/j.issn.1001-7283.2019.03.020

Previous Articles     Next Articles

Estimation Models of Maize Leaf SPAD Value Based on Hyperspectral Remote Sensing

Dong Zhe,Yang Wude,Zhang Meijun,Zhu Hongfen,Wang Chao   

  1. Institute of Dry Farming Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
  • Received:2018-09-21 Revised:2019-04-04 Online:2019-06-15 Published:2019-06-12
  • Contact: Wude Yang

Abstract:

The leaf chlorophyll content at the filling stage plays an important role in photosynthesis and yield formation of maize. To estimate the maize leaf chlorophyll content accurately and efficiently, hyperspectral remote sensing was used by taking SPAD value as the relative chlorophyll content. Conventional regression models based on spectral characteristic parameters, PLSR models based on full spectrum and spectral characteristic parameters, and BP neural network model were constructed and compared. The results showed that SPAD value of PLSR model based on full spectrum had the best fitting effect (R 2=0.910, RMSE=2.071). The fitting effect of PLSR model based on spectral characteristic parameters was close to that of PLSR model based on full spectrum. But the measured and predicted values of the latter fitting effect (R 2=0.867, RMSE=2.581, RPD=2.628) was better than that of full spectrum PLSR model, and the PLSR model based on spectral characteristic parameters had short modeling time and tow complexity. The prediction effect of the BP neural network model was worse than the two PLSR models, but better than the conventional regression models based on spectral characteristic parameters. In brief, the estimation effect of PLSR model based on spectral parameters was the best.

Key words: Hyperspectral, Maize leaf, SPAD, Partial least square regression, BP neural network

Table 1

Spectral characteristic parameters formulas used in the study"

光谱特征参数Spectral characteristic parameter 定义Definition 来源Source
NDVI NDVI=(R750-R705)/(R750+R705) Gitelson等[11]
GNDVI GNDVI=(R750-R550)/(R750+R550) Gitelson等[11]
RVI RVI=R760/R710 Penuelas等[12]
λr 红光范围内一阶导数光谱最大值对应的波长 Horler等[13]
kλr 红光范围内一阶导数光谱的峰度 姚付启等[14]
sλr 红光范围内一阶导数光谱的偏度 姚付启等[14]

Table 2

Correlation coefficients between the spectral characteristic parameters and SPAD value of maize leaves (n=80)"

参数Parameter 相关系数
Correlation coefficient
植被指数Vegetation index NDVI 0.843**
GNDVI 0.811**
RVI 0.893**
红边参数The trilateral parameter λr 0.935**
kλr 0.872**
sλr 0.914**

Table 3

SPAD value estimation model of maize leaves based on the spectral indexes"

光谱特征参数
Spectral characteristic parameter
最优拟合模型
The optimal fitting equation
建模集Modeling set 验证集Validation set
R2 RMSE R2 RMSE RPD
NDVI y=12.696e2.6521x 0.728 3.686 0.636 4.072 1.500
GNDVI y=10.909e2.7102x 0.672 4.020 0.574 4.366 1.340
RVI y=20.758x0.9129 0.812 3.095 0.716 3.715 1.791
λr y=3E-104x36.805 0.880 3.774 0.854 3.327 2.005
kλr y=640.3e1.7036x 0.784 3.432 0.714 3.657 1.739
sλr y=87.296x2+54.674x+46.509 0.847 2.697 0.804 3.028 2.137

Table 4

SPAD value estimation model of maize leaves based on PLSR model"

模型Model 建模集
Modeling set
验证集
Validation set
R2 RMSE R2 RMSE RPD
PLSR(全谱) 0.910 2.071 0.862 2.600 2.545
PLSR(光谱特征参数) 0.900 2.200 0.867 2.581 2.628

Table 5

SPAD value estimation model of maize leaves based on BP neural network"

建模集Modeling set 验证集Validation set
R2 RMSE R2 RMSE RPD
0.904 2.165 0.822 2.861 2.305

Table 6

Comparison of prediction effects of different estimation models"

模型
Model
建模集Modeling set 验证集Validation set
R2 RMSE R2 RMSE RPD
PLSR(光谱特征参数)PLSR (spectral characteristic parameter) 0.900 2.200 0.867 2.581 2.628
PLSR(全谱)PLSR (full spectrum) 0.910 2.071 0.862 2.600 2.545
BP神经网络BP neural network 0.904 2.165 0.822 2.861 2.305
多项式Polynomial (sλr) 0.847 2.697 0.804 3.028 2.137

Fig.1

The relationships between measured value and predicted value of SPAD based on different estimation models a. PLSR (spectral characteristic parameter), b. PLSR (full spectrum), c. BP neural network, d. Polynomial (sλr)"

[1] Curran P J, Windham W R, Gholz H L . Exploring the relationship between reflectance red edge and chlorophyll concentration in slash pine leaves. Tree Physiology, 1995,15(3):203-206.
doi: 10.1093/treephys/7.1-2-3-4.33 pmid: 14965977
[2] 李哲, 张飞, 陈丽华 , 等. 光谱指数的植物叶片叶绿素含量估算模型. 光谱学与光谱分析, 2018,38(5):1533-1539.
[3] 王晓星 . 夏玉米冠层光谱特征及其生理生态参量的高光谱估算模型. 杨凌:西北农林科技大学, 2015.
[4] 李媛媛, 常庆瑞, 刘秀英 , 等. 基于高光谱和BP神经网络的玉米叶片SPAD值遥感估算. 农业工程学报, 2016,32(16):135-142.
[5] 丁希斌, 刘飞, 张初 , 等. 基于高光谱成像技术的油菜叶片SPAD值检测. 光谱学与光谱分析, 2015,35(2):486-491.
[6] Thenkabail P S, Enclona E A, Ashton M S , et al. Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications. Remote Sensing of Environment, 2004,91(3):354-376.
doi: 10.1016/j.rse.2004.03.013
[7] Thenkabail P S, Smith R B, Pauw E D . Evaluation of narrowband and broadband vegetation indices for determining optimal hyperspectral wavebands for agricultural crop characterization. Photogrammetric Engineering & Remote Sensing, 2002,68(6):607-621.
[8] Chan C W, Paelinckx D . Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sensing of Environment, 2008,112(6):2999-3011.
doi: 10.1016/j.rse.2008.02.011
[9] Gitelson A A, Zur Y, Chivkunova O B , et al. Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochemistry & Photobiology, 2010,75(3):272-281.
[10] 刘海启, 李召良 . 高光谱植被遥感. 北京: 中国农业科学技术出版社, 2015: 85-86.
[11] Gitelson A, Kaufman Y J, Stark R , et al. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 2002,80(1):76-87.
doi: 10.1016/S0034-4257(01)00289-9
[12] Penuelas J, Baret F, Filella I . Semiempirical indexes to assess carotenoids chlorophyll-a ratio from leaf spectral reflectance. Photosynthetica, 1995,31(2):221-230.
[13] Horler D N H, Barber J, Darch J P , et al. Approaches to detection of geochemical stress in vegetation. Advances in Space Research, 1983,3(2):175-179.
[14] 姚付启, 张振华, 杨润亚 , 等. 基于红边参数的植被叶绿素含量高光谱估算模型. 农业工程学报, 2009,25(S2):123-129.
[15] 马赵扬, 杜昌文, 周健民 . 土壤碳酸钙中红外光声光谱特征及其应用. 光谱学与光谱分析, 2012,32(5):1255-1258.
[16] 陈志强, 王磊, 白由路 , 等. 整个生育期玉米叶片SPAD高光谱预测模型研究. 光谱学与光谱分析, 2013,33(10):2838-2842.
[17] 宋开山, 张柏, 李方 , 等. 高光谱反射率与大豆叶面积及地上鲜生物量的相关分析. 农业工程学报, 2005,21(1):36-40.
[18] 汤旭光, 宋开山, 刘殿伟 , 等. 基于可见/近红外反射光谱的大豆叶绿素含量估算方法比较. 光谱学与光谱分析, 2011,31(2):371-374.
[1] Kainan Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yushuang Yang,Ruiqi Ma,Yingjie Zhu,Zheli Xu,Baojun Zhang,Guangcai Zhao. Effects of Tridimensional Uniform Sowing and Fertilizer on Grain and Physiological Characteristics of Winter Wheat [J]. Crops, 2019, 35(1): 103-110.
[2] Chen Yingying,Wangxu Yiling,Zhu Yuhan,Wu Wei,Liu Tao,Sun Chengming. Hyperspectral Estimation of Nitrogen Content in Rice Panicle [J]. Crops, 2018, 34(5): 116-120.
[3] Zhongnan Li,Kewei Wang,Yueren Wang,Shenghui Wu,Guangfa Li. Genetic Analysis on Chlorophyll SPAD Value of Seedling Leaf in Maize Variety Xianyu 335 [J]. Crops, 2016, 32(4): 101-101.
[4] . [J]. Crops, 2013, 29(3): 136-140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yudong Fang,Tianfu Han. Research Progress in Speed Breeding of Crops[J]. Crops, 2019, 35(2): 1 -7 .
[2] Zhang Meng,Gou Jiulan,Wei Quanquan,Chen Long,He Jiafang. Effects of Different Biological Organic Fertilizers on the Growth of Spring Potato and Soil Fertility at High Altitude Region in Guizhou Province[J]. Crops, 2019, 35(3): 132 -136 .
[3] Fu Jing,Sun Ningning,Liu Tianxue,Ma Junfeng,Yang Yulong,Zhao Xia,Mu Xinyuan,Li Chaohai. The Effects of High Temperature at Spike Stage on Grain-Filling Physiology and Yield of Maize[J]. Crops, 2019, 35(3): 118 -125 .
[4] Quan Baoquan,Lü Ruizhou,Wang Guijiang,Ren Jiecheng. Effects of Different Cultivation Measures during Vegetative Propagation on Growth and Yield of Sweet Potato[J]. Crops, 2019, 35(3): 158 -161 .
[5] Lu Shouping,Zhang Hua,Meng Zhaodong,Mu Chunhua. Improvement of Grain Oil Content in Maize Inbred Lines by Molecular Markering Technology[J]. Crops, 2019, 35(3): 24 -28 .
[6] Zhang Ziqiang,Wang Liang,Bai Chen,Zhang Huizhong,Li Xiaodong,Fu Zengjuan,Zhao Shangmin,E Yuanyuan,Zhang Hui,Zhang Bizhou. Analysis on Main Agronomic Traits of 104 Sugarbeet Germplasm Resources[J]. Crops, 2019, 35(3): 29 -36 .
[7] Ma Mingchuan,Liu Longlong,Zhang Lijun,Cui Lin,Zhou Jianping. Morphological Identification and Analysis of EMS-Induced Mutants from Ciqiao[J]. Crops, 2019, 35(3): 37 -41 .
[8] Fan Huiling,Bai Shengwen,Zhu Xuefeng,Li Zhenzhou,Qin Minggang,He Zhijun. Difference of Salt-Alkaline Tolerance of Three Rape and Its Two Relatives at Germination Stage[J]. Crops, 2019, 35(3): 178 -184 .
[9] Ye Wenbin,He Yupeng,Wang Yu,Wang Han,Zhao Qingfang. Effects of Alkalized Olive Oil Processing Liquid Wastes on Seed Germination and Seedling Growth of Zea mays L.[J]. Crops, 2019, 35(3): 185 -191 .
[10] Wang Yonggang,Ji Mingze,Zhao Xuhan,Yu Lihe,Xue Yingwen. Effects of Sowing Dates on Yield of Baiyan 7 in Midwest of Heilongjiang Province[J]. Crops, 2019, 35(3): 106 -111 .