Crops ›› 2016, Vol. 32 ›› Issue (4): 101-104.doi: 10.16035/j.issn.1001-7283.2016.04.016

Previous Articles     Next Articles

Genetic Analysis on Chlorophyll SPAD Value of Seedling Leaf in Maize Variety Xianyu 335

Li Zhongnan1,Wang Kewei1,Wang Yueren2,Wu Shenghui2,Li Guangfa2   

  1. 1 Jilin Agricultural University,Changchun 130118,Jilin,China
    2 Tonghua Academy of Agricultural Sciences,Meihekou 135007,Jilin,China
  • Received:2016-04-17 Revised:2016-06-22 Online:2016-08-15 Published:2018-08-26
  • Contact: Guangfa Li

Abstract:

The chlorophyll SPAD value of seedling leaf was genetically analyzed withthe six generations of P1, P2, F1, B1, B2 and F2 in Xianyu 335 variety (PH6WC×PH4CV), using the joint analysis of major gene and polygene inheritance model.The results showed that the chlorophyll SPAD value in the seedling stage followed a mixed genetic model of two major genes additive plus polygene additive and dominance. It was mainly controlled by polygene genetic model, added major gene model.F1 had superior parent heterosis.The heritability of major gene plus polygene was bigger and the difference was small in three separating generations, which showed that the trait was genetically stable.

Key words: Maize, Xianyu 335, Chlorophyll SPAD value, Genetic analysis

Table 1

Basic parameters of each generation"

世代
Generation
SPAD 标准差
Standard
deviation
标准误
Standard
error
变异系数(%)
Coefficient of variation
P1 49.02 2.3811 0.2485 4.86
P2 44.28 2.2006 0.2591 4.97
F1 53.53 2.4973 0.2949 4.67
B1 52.39 4.7841 0.2702 9.13
B2 49.89 4.6593 0.2661 9.34
F2 50.95 4.6254 0.2920 9.08

Table 2

The max likelihood and AIC values under candidate models"

模型Model Log_Max_likelihood_value AIC 模型Model Log_Max_likelihood_value AIC
1MG-AD -2 029.77 4 067.533 MX1-AD-ADI -2 008.73 4 041.453
1MG-A -2 091.90 4 189.808 MX1-AD-AD -2 013.47 4 044.943
1MG-EAD -2 041.30 4 088.599 MX1-A-AD -2 013.19 4 042.371
1MG-AEND -2 088.23 4 182.465 MX1-EAD-AD -2 013.33 4 042.667
2MG-ADI -2 010.52 4 041.037 MX1-AEND-AD -2 013.46 4 042.921
2MG-AD -2 022.18 4 056.362 MX2-ADI-ADI -2 005.98 4 047.962
2MG-A -2 208.98 4 425.953 MX2-ADI-AD -2 006.01 4 042.020
2MG-EA -2 091.77 4 189.549 MX2-AD-AD -2 013.34 4 048.674
2MG-AED -2 043.16 4 094.318 MX2-A-AD -2 009.06 4 036.127
2MG-EEAD -2 043.16 4 092.315 MX2-EA-AD -2 013.32 4 042.639
PG-ADI -2 009.37 4 038.743 MX2-AED-AD -2 013.33 4 044.662
PG-AD -2 013.34 4 040.687 MX2-EEAD-AD -2 013.33 4 042.669

Table 3

Tests for fitness in genetic model"

世代Generation U12 U22 U32 nW2 Dn
P1 0.1519(0.6968) 0.1388(0.7095) 0.0004(0.9847) 0.0704(0.7562) 0.0179(1)
P2 0.1209(0.7281) 0.0824(0.7741) 0.0393(0.8428) 0.1492(0.3937) 0.0145(1)
F1 0.4535(0.5007) 0.4857(0.4858) 0.0322(0.8575) 0.0771(0.7189) 0.0234(1)
B1 0.0329(0.8561) 0.0069(0.9337) 1.0707(0.3008) 0.1006(0.5928) 0.0048(1)
B2 0.0354(0.8508) 0.0019(0.9653) 0.3074(0.5793) 0.0367(0.9493) 0.0049(1)
F2 0.0751(0.7841) 0(0.9984) 1.1426(0.2851) 0.0730(0.7417) 0.0036(1)

Table 4

The estimates of 1st and 2nd order genetic parameters"

一阶参数
1st order genetic parameters
估计值
Estimates
二阶参数
2nd order genetic parameters
估计值Estimates
B1 B2 F2
m 49.0395 σp2 22.8878 21.7094 21.3947
da 0.1443 σmg2 4.6123 1.8738 3.1121
db -1.0738 σpg2 8.8483 10.4083 8.8555
ha - σ2 9.4271 9.4271 9.4271
hb - hmg2(%) 20.15 8.63 14.55
ha/da - hpg2(%) 38.66 47.94 41.39
hb/db - hmg2+hpg2(%) 58.81 56.57 55.94
[d] 3.9632 - - - -
[h] 6.0851 - - - -
[h]/[d] 1.5400
[1] 艾天成, 李芳敏, 周治安 , 等. 作物叶片叶绿素含量与SPAD值相关性研究. 湖北农学院学报, 2000,20(1):6-8.
[2] 贾小容, 陈春苑 . 不同绿化植物叶绿素SPAD值对环境的响应. 江苏农业科学, 2011,39(4):206-208.
[3] 李鹏程, 董合林, 刘爱忠 , 等. 棉花上部叶片叶绿素SPAD值动态变化研究. 中国农学通报, 2012,28(3):121-126.
[4] 徐照丽, 杨彦明, 卢秀萍 , 等. 不同烤烟品种叶绿素SPAD值的变化特征. 湖南农业大学学报, 2010,36(5):499-501.
[5] 包和平, 毕成龙, 李颖 , 等. 爆裂玉米叶片叶绿素含量的混合遗传分析. 上海农业学报, 2011,27(2):82-86.
[6] 张铭堂, 徐国良, 才卓 . 玉米自交系选育的理论基础与实践经验. 玉米科学, 2010,18(2):1-4.
[7] 盖钧镒, 章元明, 王建康 .植物数量性状遗传体系.北京: 科学出版社, 2003.
[8] 孔繁玲 . 植物数量遗传学.北京: 中国农业大学出版社, 2006.
[9] 赵延明, 董树亭, 高宏伟 . 玉米叶片叶绿素SPAD遗传主效应及其与环境互作的遗传分析. 华北农学报, 2006,21(4):1-4.
doi: 10.3321/j.issn:1000-7091.2006.04.001
[10] 赵菊, 朱旭东, 严钦泉 , 等. 杂交水稻功能叶片叶绿素SPAD值的杂种优势分析. 作物研究, 2012,26(2):103-110.
[1] Wang Li, Wang Zuoping, Zhang Zhongbao, Bai Ling, Wu Zhongyi. Screening of Strongly Expressed Promoters in Immature Maize Kernels [J]. Crops, 2020, 36(4): 114-120.
[2] Li Qiang, Kong Fanlei, Yuan Jichao. Effects of Interannual Meteorological Factors on Maize Dry Matter Accumulation and Yield in the Hilly Area of Southwest China [J]. Crops, 2020, 36(4): 150-157.
[3] Zheng Fei, Wang Lixia, Liu Ruixiang, Kong Lingjie, Chen Yanping, Yuan Jianhua, Cui Yakun. Morphological and Physiological Differences of Maize Inbred Lines at Seedling Stage under Waterlogging Stress [J]. Crops, 2020, 36(4): 158-163.
[4] Yuan Wenya, Zhao Xiaolei, Zhou Xumei, Wang Lei, Peng Bo, Wang Yi. The Development of waxy Gene Function Marker and Its Application in Waxy Maize Breeding [J]. Crops, 2020, 36(4): 99-106.
[5] Song Qiulai, Wang Qi, Feng Yanjiang, Sun Yu, Zeng Xiannan, Lai Yongcai. Effects of Paddy-Upland Rotation and Straw Returning on Soil Related Enzyme Activities in Cold Region [J]. Crops, 2020, 36(3): 149-153.
[6] Liu Jian, Sun Bin, Zhang Weiqiang, Feng Xiaoxi, Zhang Jiyang, Ning Dongfeng, Qin Anzhen, Liu Zhandong, Qiao Miao, Shen Hongli, Xu Yan. Effects of Chemical Regulating on Grain Harvest Quality and Water Use Efficiency in Summer Maize [J]. Crops, 2020, 36(3): 161-168.
[7] Li Ruijie,Tang Huihui,Wang Qingyan,Xu Yanli,Fang Mengying,Yan Peng,Dong Zhiqiang,Zhang Fenglu. Effects of 5- Aminolevulinic Acid and Ethylene Compounds on Photosynthetic Characteristics and Yield of Spring Maize in Northeast China [J]. Crops, 2020, 36(2): 125-133.
[8] Yan Hua,Yan Zhongwen,Lei Jie. Climate Change Characteristics of Xinyuan during 1981-2018 and Its Impact on Spring Maize [J]. Crops, 2020, 36(2): 140-146.
[9] Zhou Wei,Cui Fuzhu,Duan Hongkai,Hao Guohua,Yang Hui,Liu Ruirui. Effects of Sowing Date on Yield and Quality of Waxy Maize [J]. Crops, 2020, 36(2): 156-161.
[10] Zhang Xiaoyu,Zhang Yaling,Jin Xuehui,Yan Tianyu,Zhao Ze. Genetic Analysis of Pathogenicity of Sexual Progeny of Magnaporthe oryzae [J]. Crops, 2020, 36(2): 182-187.
[11] Wei Xiaoyi,Wang Jiamu,Ma Yi,Ma Junfeng,Hong Defeng,Wei Feng. Identification and Principal Component Analysis of Maize Combinations Suitable for Mechanical Grain Harvesting [J]. Crops, 2020, 36(2): 48-53.
[12] Sun Ruidong,Zang Zhenyuan,Ci Jiabin,Yang Wei,Ren Xuejiao,Jiang Liangyu,Yang Weiguang. Identification of Resistance and Analysis of Resistance Source for Exserohilum turcicum in Maize Inbred Lines [J]. Crops, 2020, 36(2): 65-70.
[13] Xu Hanlin,Liu Yao,Yuan Xiaofeng,Pan Jie,Weng Qiaoyun,Lü Aizhi,Liu Yinghui. Projection of Climate Change on the Planting Distribution of Silage Maize in Northwest Hebei Province [J]. Crops, 2020, 36(1): 124-129.
[14] Si Leiyong,Xia Zhenqing,Jin Yan,Chen Guangzhou,Wang Guangfu,Lu Haidong,Xue Jiquan. Impacts of Different Mulching Patterns on Root-Shoot Growth of Spring Maize and Water Use Efficiency in Dry Land [J]. Crops, 2020, 36(1): 146-153.
[15] Bai Lanfang,Zhang Xiangqian,Wang Rui,Wang Ya'nan,Ye Xuesong,Wang Yufen,Li Juan,Zhang Dejian. Study on Photosynthetic Characteristics, Yield and Quality of Different Maize Varieties [J]. Crops, 2020, 36(1): 154-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!