Crops ›› 2019, Vol. 35 ›› Issue (3): 66-72.doi: 10.16035/j.issn.1001-7283.2019.03.011

Previous Articles     Next Articles

Screening and Identification of Male-Specific RAPD and SCAR Markers in Cannabis sativa L. (Industrial Hemp)

Jiang Ying1,2,Feng Naijie2,Wang Xiaonan1,Han Xicai1,Han Chengwei1,Zhao Yue1,Cao Kun1,Sun Yufeng1,Li Zhenwei1   

  1. 1 Daqing Branch of Heilongjiang Academy of Sciences, Daqing 163319, Heilongjiang, China
    2 College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
  • Received:2018-11-07 Revised:2019-02-25 Online:2019-06-15 Published:2019-06-12
  • Contact: Yufeng Sun,Zhenwei Li

Abstract:

The male DNA pools or female DNA pools of "Huoma No.1" were analyzed respectively by 42 RAPD random amplified primers. The results showed that a male-specific DNA fragment with a length of 869bp was amplified by OPV-08. Two SCAR primers were constructed according to the sequencing results. The primers of SCAR marker could identify the different genders of hemp not only in the known sex plants at flowering stage but also in the unknown sex seedlings at seedling stage. That could also be used for early identification of the appearance of male plant in monoecious industrial hemp. This provides a basis for early sex identification of industrial hemp, also provides support for reducing the appearance of male plant in monoecious industrial hemp.

Key words: Cannabis sativa L. (industrial hemp), Sex identification, Male, RAPD (random amplified polymorphic DNA), SCAR (sequence characterized amplified region)

Table 1

The random primers used in amplification and their sequences (5′-3′)"

引物Primer 序列Sequence 引物Primer 序列Sequence 引物Primer 序列Sequence
OPH-18 GAATCGGCCA OPP-08 ACATCGCCCA OPZ-06 GTGCCGTTCA
OPI-07 CAGCGACAAG OPP-11 AACGCGTCGG OPZ-13 GACTAAGCCC
OPO-10 TCAGAGCGCC OPP-12 AAGGGCGAGT OPU-05 TTGGCGGCCT
OPO-12 CAGTGCTGTG OPP-15 GGAAGCCAAC OPU-12 TCACCAGCCA
OPO-15 TGGCGTCCTT OPP-16 CCAAGCTGCC OPU-15 ACGGGCCAGT
OPY-05 GGCTGCGACA OPP-17 TGACCCGCCT OPU-16 CTGCGCTGGA
OPY-11 AGACGATGGG OPS-11 AGTCGGGTGG OPR-08 CCCGTTGCCT
OPY-15 AGTCGCCCTT OPS-17 TGGGGACCAC OPR-12 ACAGGTGCGT
OPY-16 GGGCCAATGT OPS-19 GAGTCAGCAG OPR-13 GGACGACAAG
OPT-07 GGCAGGCTGT OPX-12 TCGCCAGCCA OPV-06 ACGCCCAGGT
OPT-08 AACGGCGACA OPX-13 ACGGGAGCAA OPV-07 GAAGCCAGCC
OPT-13 AGGACTGCCA OPX-17 GACACGGACC OPV-08 GGACGGCGTT
OPQ-05 CCGCGTCTTG OPW-09 GTGACCGAGT OPV-10 GGACCTGCGT
OPQ-12 AGTAGGGCAC OPW-16 CAGCCTACCA OPV-17 ACCGGCTTGT

Fig.1

DNA extraction in industrial hemp M, DNA marker is 1kb plus DNA ladder; 1-2, The female of HM1; 3-4, The male of HM1; 5, The female of SH2; 6, The male of SH2; 7, The female of WD2; 8, The male of WD2; 9, The female of LJ; 10, The male of LJ; 11, The female of BQ; 12, The male of BQ; 13, The female of LB; 14, The male of LB; 15-16, The leaves of QM1 at seedling stage; 17-18, The leaves of JM1 at seedling stage; 19, Monoecism industrial hemp USO-14"

Fig.2

PCR amplification with the DNA pools of female and male plants in industrial hemp HM1 using primer OPV-08 Arrow indicate that there is a male specific fragment at>750bp; DNA marker is D2000 DNA ladder"

Fig.3

Gel recovery of male specific DNA fragments"

Fig.4

The nucleotide sequences of male specific DNA fragments"

Fig.5

SCAR molecular markers of HM1 male DNA marker is D2000 DNA ladder"

Fig.6

Detection of male and female plants in six dioecious industrial hemp by SCAR molecular markers 1-6 are HM1, SH2, WD2, LJ, BQ, LB, respectively; DNA marker is D2000 DNA ladder"

Fig.7

Sex detection of dioecious industrial hemp at seedling stage by SCAR molecular markers DNA marker is D2000 DNA ladder"

Fig.8

Analysis of SCAR molecular markers in monoecism industrial hemp DNA marker is D2000 DNA ladder"

[1] 熊和平 . 麻类作物育种学. 北京: 中国农业科学技术出版社, 2008: 297.
[2] Allegret S, Bouloc P, Arnaud L , et al. Hemp:Industrial Production and Uses. Bouloc (Ed.), 2013: 4-26.
[3] Amaducci S, Scordia D, Liu F H , et al. Key cultivation techniques for hemp in Europe and China. Industrial Crops & Products, 2014,68:2-16.
[4] Radu S, Robu T . Effects and efficiency of dietary hemp seed and flaxseed oils on the human metabolic function. Journal of Environmental Protection & Ecology, 2014,15(1):326-331.
[5] 吕佳淑, 赵立宁, 臧巩固 , 等. 大麻性别相关AFLP分子标记筛选. 湖南农业大学学报(自然科学版), 2010,36(2):123-127.
[6] 李仕金, 辛培尧, 周军 , 等. 大麻性别研究进展. 中国麻业科学, 2008,30(2):110-113.
[7] Shao H, Clarke R C . Taxonomic studies of Cannabis in China. Journal of the International Hemp Association, 1997,3(2):55-60.
[8] 宋书娟, 刘卉, 邵宏 . 大麻性别连锁的特异DNA标记的初步研究. 中国药物依赖性杂志, 2001,10(3):182-184.
[9] 李仕金, 辛培尧, 郭鸿彦 , 等. 大麻雄性相关RAPD和SCAR标记的研究. 广东农业科学, 2012,39(24):151-154.
[10] 陈美霞, 祁建民, 刘伟 , 等. 麻类作物分子育种的研究现状与展望. 福建农业学报, 2012,27(7):780-786.
[11] 郭丽, 张海军, 王明泽 , 等. 大麻雄性基因连锁AFLP分子标记的筛选及鉴定. 中国麻业科学, 2015(1):5-8.
[12] 张海军, 郭丽, 王明泽 , 等. 大麻基因组DNA提取方法的比较与优化. 中国麻业科学, 2014,36(4):188-190.
[13] 苏友波, 朱颖, 林春 , 等. 大麻RAPD分子标记的引物筛选. 中国麻业, 2002,24(5):12-16.
[14] 樊芳芳 . 大麻酚类化合物的全合成. 郑州:郑州大学, 2013.
[15] 陈其本, 余立惠, 杨明 , 等. 大麻栽培利用及发展对策. 北京: 电子科技大学出版社, 1993: 294-308.
[16] 任朝兴 . 番木瓜(Carica papaya L.)遗传多样性的RAPD标记及雄性性别的RAPD和SCAR标记研究. 重庆:西南大学, 2007.
[17] Pauls, 傅骏骅 . 应用RAPD分子标记识别苜蓿种群关系. 作物杂志, 1995(6):28-28.
[18] 李向勇, 陶波, 李英慧 , 等. 黑龙江省六个地点鸭跖草RAPD遗传多样性分析. 作物杂志, 2008(2):21-25.
[19] 陈永胜, 郝卫国, 谭颖 , 等. RAPD标记蓖麻单雌性状的反应体系优化. 作物杂志, 2008(1):31-33.
[20] 姜颖, 孙宇峰, 潘冬梅 , 等. 工业大麻甲基磺酸乙酯(EMS)诱变体的筛选及RAPD分析. 作物杂志, 2017(6):50-54.
[21] 关强, 张月学, 徐香玲 , 等. DNA分子标记的研究进展及几种新型分子标记技术. 黑龙江农业科学, 2008(1):102-104.
[22] 邹继军, 杨庆凯, 陈受宜 , 等. 大豆灰斑病抗病基因RAPD标记的分子特征及抗、感种质的SCAR标记鉴定. 科学通报, 1999,44(23):2544-2550.
[23] 王剑锴 . 金线莲RAPD-SCAR标记的开发和不同种质遗传多样性评价. 福州:福建农林大学, 2016.
[24] 闫华超, 高岚, 李桂兰 . 分子标记技术的发展及应用. 生物学通报, 2006,41(2):17-19.
[25] 徐安毕, 王文泉 . 几种分子标记方法相结合建立的新型分子标记方法. 生物学通报, 2007,42(1):26-28.
[26] Urasaki N, Tokumoto M, Tarora K , et al. A male and hermaphrodite specific RAPD marker for papaya (Carica papaya L.). Theoretical & Applied Genetics, 2002,104(2/3):281-285.
[27] Xiong F, Zheng M J, Liu X R , et al. Development of SCAR markers based on RAPD and SRAP for rapid identification of pleurotus sajor-caju strain. Acta Agriculturae Universitatis Jiangxiensis, 2010,32(3):601-607.
[28] Singh N, Pal A K, Meena B , et al. Development of ISSR- and RAPD-derived SCAR markers for identification of gladiolus germplasm. Journal of Horticultural Science & Biotechnology, 2017,92(6):577-582.
[29] Zhou W, Wang Y, Zhang G , et al. Molecular sex identification in dioecious Hippophae rhamnoides L. via RAPD and SCAR markers. Molecules, 2018,23(5):1048.
doi: 10.3390/molecules23051048
[30] Shao H, Song S J, Clarke R C . Female-associated DNA polymorphisms of hemp (Cannabis sativa L.). Journal of Industrial Hemp, 2003,8(1):5-9.
[31] Mandolino G, Carboni A, Forapani S , et al. Identification of DNA markers linked to the male sex in dioecious hemp (Cannabis sativa L.). Theoretical & Applied Genetics, 1999,98(1):86-92.
[32] 陈其军, 韩玉珍, 傅永福 , 等. 大麻性别的RAPD和SCAR分子标记. 植物生理学报, 2001,27(2):173-178.
doi: 10.3321/j.issn:1671-3877.2001.02.014
[1] Yingfen Jiang,Xinjie Wu,Weixin Fei,Fengxiang Chen. Research Progress on Recessive Genic Male Sterility of Rapeseed [J]. Crops, 2018, 34(2): 11-16.
[2] Lihua Liu,Shaohua Yuan,Shuying Feng,Binshuang Pang,Hongbo Li,Yangna Liu,Liping Zhang,Changping Zhao. Genetic Difference Analysis and Construction of SSR Fingerprinting Database for F-Type Wheat Male Sterile Line and Restorer Lines [J]. Crops, 2017, 33(6): 30-36.
[3] Yingjie Zheng,Guanghong Chen,Shaolin Wang,Ming Xia,Buchao Que,Yahui Yu,Ying Wang,Zhenyu Li. Multiplying Northern Japonica Dual-Purpose Genic Male Sterile Lines in Hainan Climate Conditions [J]. Crops, 2017, 33(1): 51-55.
[4] Mingzhi Yin,Chunyun Guan. Isozyme Analysis of a New Cytoplasmic Male Sterile Line 1193A and Its Maintain Line in Brassica napus [J]. Crops, 2016, 32(4): 36-40.
[5] Lifang Sun,Jie Deng,Xia Wang,Wei Zhao,Kejun Yang,Xingfen Miao,Shuren Gao. Type Identification of Cytoplasmic Male Sterile Line and Study of Pollen Abortion in Maize [J]. Crops, 2016, 32(3): 27-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yudong Fang,Tianfu Han. Research Progress in Speed Breeding of Crops[J]. Crops, 2019, 35(2): 1 -7 .
[2] Zhang Meng,Gou Jiulan,Wei Quanquan,Chen Long,He Jiafang. Effects of Different Biological Organic Fertilizers on the Growth of Spring Potato and Soil Fertility at High Altitude Region in Guizhou Province[J]. Crops, 2019, 35(3): 132 -136 .
[3] Fu Jing,Sun Ningning,Liu Tianxue,Ma Junfeng,Yang Yulong,Zhao Xia,Mu Xinyuan,Li Chaohai. The Effects of High Temperature at Spike Stage on Grain-Filling Physiology and Yield of Maize[J]. Crops, 2019, 35(3): 118 -125 .
[4] Quan Baoquan,Lü Ruizhou,Wang Guijiang,Ren Jiecheng. Effects of Different Cultivation Measures during Vegetative Propagation on Growth and Yield of Sweet Potato[J]. Crops, 2019, 35(3): 158 -161 .
[5] Lu Shouping,Zhang Hua,Meng Zhaodong,Mu Chunhua. Improvement of Grain Oil Content in Maize Inbred Lines by Molecular Markering Technology[J]. Crops, 2019, 35(3): 24 -28 .
[6] Zhang Ziqiang,Wang Liang,Bai Chen,Zhang Huizhong,Li Xiaodong,Fu Zengjuan,Zhao Shangmin,E Yuanyuan,Zhang Hui,Zhang Bizhou. Analysis on Main Agronomic Traits of 104 Sugarbeet Germplasm Resources[J]. Crops, 2019, 35(3): 29 -36 .
[7] Ma Mingchuan,Liu Longlong,Zhang Lijun,Cui Lin,Zhou Jianping. Morphological Identification and Analysis of EMS-Induced Mutants from Ciqiao[J]. Crops, 2019, 35(3): 37 -41 .
[8] Fan Huiling,Bai Shengwen,Zhu Xuefeng,Li Zhenzhou,Qin Minggang,He Zhijun. Difference of Salt-Alkaline Tolerance of Three Rape and Its Two Relatives at Germination Stage[J]. Crops, 2019, 35(3): 178 -184 .
[9] Ye Wenbin,He Yupeng,Wang Yu,Wang Han,Zhao Qingfang. Effects of Alkalized Olive Oil Processing Liquid Wastes on Seed Germination and Seedling Growth of Zea mays L.[J]. Crops, 2019, 35(3): 185 -191 .
[10] Wang Yonggang,Ji Mingze,Zhao Xuhan,Yu Lihe,Xue Yingwen. Effects of Sowing Dates on Yield of Baiyan 7 in Midwest of Heilongjiang Province[J]. Crops, 2019, 35(3): 106 -111 .