Crops ›› 2020, Vol. 36 ›› Issue (4): 150-157.doi: 10.16035/j.issn.1001-7283.2020.04.021

Previous Articles     Next Articles

Effects of Interannual Meteorological Factors on Maize Dry Matter Accumulation and Yield in the Hilly Area of Southwest China

Li Qiang1(), Kong Fanlei2, Yuan Jichao2()   

  1. 1Institute of Special Plants, Chongqing University of Arts and Sciences/Chongqing Collaborative Innovation Center of Special Plant Industry/Chongqing Key Laboratory of Economic Plant Biotechnology, Yongchuan 402160, Chongqing, China
    2College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affaris, Chengdu 611130, Sichuan, China
  • Received:2019-11-22 Revised:2019-11-28 Online:2020-08-15 Published:2020-08-11
  • Contact: Yuan Jichao E-mail:liqiangxj@163.com;yuanjichao5@163.com

Abstract:

Based on the field experiments and meteorological data from 2011 to 2016, the effects of interannual meteorological factors on dry matter accumulation and yield of maize in the hilly area of Southwest China were studied to provide theoretical support for the high and stable yield of maize production in the hilly area of Southwest China. The results showed that there were abundant water and heat resources in the hilly area of Southwest China, but there were obvious interannual fluctuations in meteorological factors, with the largest fluctuation in precipitation and the smallest fluctuation in accumulated temperature, the distribution of precipitation, accumulated temperature and sunshine hours at different growth stages of maize were also different. Accumulated temperature was the main limiting factor for maize morphological formation during the early growth stage. The accumulated temperature during pre-flowering and sunshine and precipitation during post-flowering jointly regulated the dry matter accumulation, whereas different meteorological factors affected the yield traits. Therefore, the production of maize in the hilly area of Southwest China can be improved by adjusting the sowing date. High accumulated temperature during the early stage of maize promotes plant growth and development. Reducing precipitation and increasing sunshine hours during post-flowering can improve the grain filling and increase yield.

Key words: Hilly area of southwest China, Maize, Meteorological factors, Dry matter accumulation, Yield

Fig.1

Meteorological data of experimental site from 2011 to 2016 AN: annual; WGP: whole growth stage; SS: sowing-silking stage; SM: silking-mature stage"

Fig.2

Plant height and leaf area index of maize in different years Different lowercase letters indicate significant difference P < 0.05. The same below"

Fig.3

Differences of dry matter accumulation in different years"

Table 1

Differences of pre-flowering dry matter translocation and post-flowering dry matter assimilation in different years"

品种Cultivar 年份Year DMT (t/hm2) PDMT (t/hm2) DMTE (%) CAG (%) CPAG (%)
正红311 2011 1.32a 6.10d 24.31ab 17.73a 82.27d
Zhenghong 311 2012 0.60de 5.32ef 11.63de 10.34bc 89.66bc
2013 0.50ef 7.26b 7.81efg 6.40cd 93.60ab
2014 0.47ef 7.35b 7.85efg 5.97cd 94.03ab
2015 0.30fg 7.16b 4.83fg 3.99d 96.01a
2016 0.24g 7.84a 3.85g 3.00d 97.00a
先玉508 2011 1.26a 4.98f 29.24a 20.17a 79.83d
Xianyu 508 2012 0.96b 3.99g 27.27ab 19.48a 80.52d
2013 1.28a 5.38e 23.17b 19.29a 80.71d
2014 0.89bc 5.93d 17.86c 13.04b 86.96c
2015 0.73cd 5.12ef 13.72cd 12.49b 87.51c
2016 0.52ef 6.58c 9.40def 7.28cd 92.72ab
F 品种Cultivar (C) 51.30** 100.53** 28.29** 23.78** 23.78**
F-value 年份Year (Y) 25.71** 23.40** 9.92* 7.20* 7.20*
C×Y 4.75** 2.67* 3.31* 2.78* 2.78*

Table 2

Changes of yield and panicle characters of maize in different years"

品种
Cultivar
年份
Year
穗长
Ear length (cm)
穗粗
Ear diameter (cm)
穗粒数
Kernel number per ear
千粒重
1000-kernel weight (g)
产量
Yield (kg/hm2)
正红311 2011 17.76bc 5.58a 470.11de 306.11bc 6 690.78ef
Zhenghong 311 2012 16.58ef 5.25bc 453.99ef 304.13cd 5 853.90g
2013 17.93b 5.31b 495.51bc 310.26bc 7 194.02bc
2014 18.18b 5.33b 509.02ab 307.17bc 7 444.27b
2015 17.29cd 5.21bcd 484.43cd 295.71d 6 768.98de
2016 19.34a 5.54a 521.31a 312.80abc 7 890.13a
先玉508 2011 17.18cde 5.04de 414.24i 315.56ab 5 941.49g
Xianyu 508 2012 14.51g 4.97e 369.56j 309.17bc 4 803.90h
2013 17.08de 5.08cde 433.07gh 312.13bc 6 557.02ef
2014 17.23cd 5.05de 438.06fg 311.44bc 6 429.93f
2015 16.21f 5.00e 423.27gh 307.95bc 6 071.88g
2016 17.65bcd 5.08cde 463.24e 322.30a 6 964.87cd
F 品种Cultivar (C) 27.18** 37.00** 227.93** 19.37** 141.61**
F-value 年份Year (Y) 12.57** 1.76ns 27.23** 7.06* 68.37**
C×Y 3.52* 5.49** 1.28ns 1.77ns 1.82ns

Table 3

Correlation coefficients of dry matter accumulation and yield of maize with meteorological factors"

指标Index 降水量Precipitation (mm) 积温Accumulated temperature (℃) 日照时数Sunshine hours (h)
WGP SS SM WGP SS SM WGP SS SM
株高Plant height (cm) -0.173 -0.494 - -0.774 -0.730 - -0.791 0.453 -
叶面积指数Leaf area index -0.203 -0.705 - -0.677 -0.883* - -0.612 0.331 -
花前物质积累DMA (t/hm2) 0.208 -0.590 - -0.782 -0.941** - -0.589 0.466 -
花后物质积累PDMA (t/hm2) -0.246 -0.714 -0.637 -0.683 -0.587 -0.267 -0.617 0.203 -0.716
生物量Biomass (t/hm2) -0.051 -0.710 -0.447 -0.787 -0.848* -0.114 -0.652 0.337 -0.668
花前物质转运量DMT (t/hm2) 0.062 -0.901* 0.564 -0.353 -0.828* 0.762 -0.125 0.244 -0.002
花后物质同化量PDMT (t/hm2) -0.145 -0.630 -0.493 -0.774 -0.836* -0.091 -0.729 0.372 -0.751
花前物质转运率DMTE (%) -0.003 -0.911* 0.508 -0.519 -0.858* 0.579 -0.107 0.017 -0.162
花前转运贡献率CAG (%) 0.116 -0.895* 0.614 -0.524 -0.919** 0.617 -0.176 0.022 -0.262
花后同化贡献率CPAG (%) -0.116 -0.895* -0.614 -0.524 -0.919** -0.617 -0.176 -0.022 -0.262
穗长Ear length (cm) -0.239 -0.289 -0.392 -0.777 -0.627 0.169 -0.877* 0.374 -0.955**
穗粗Ear diameter (cm) -0.338 -0.191 -0.218 -0.575 -0.225 0.284 -0.670 0.039 -0.908*
穗粒数Kernel number per ear -0.148 -0.597 -0.478 -0.791 -0.821* -0.047 -0.755 0.363 -0.793
千粒重1000-kernel weight (g) -0.026 -0.238 -0.769 -0.724 -0.452 -0.562 -0.426 -0.216 -0.751
产量Yield (kg/hm2) -0.104 -0.513 -0.688 -0.820* -0.740 -0.779 -0.806* 0.409 -0.831*
平均绝对值Average of absolute value 0.145 -0.618 0.535 -0.672 -0.748 0.407 -0.541 0.258 -0.588
[1] 代姝玮, 杨晓光, 赵孟 , 等. 气候变化背景下中国农业气候资源变化Ⅱ.西南地区农业气候资源时空变化特征. 应用生态学报, 2011,22(2):442-452.
[2] 周长艳, 岑思弦, 李跃清 , 等. 四川省近50年降水的变化特征及影响. 地理学报, 2011,66(5):619-630.
[3] 李金建, 张菡, 王锐婷 , 等. 基于湿润指数的四川盆地农业干旱时空变化特征. 西南大学学报(自然科学版), 2014,36(1):129-136.
[4] 王明田, 张玉芳, 马均 , 等. 四川省盆地区玉米干旱灾害风险评估及区划. 应用生态学报, 2012,23(10):2803-2811.
[5] Ren B Z, Li X, Dong S T , et al. Soil physical properties and maize root growth under different tillage systems in the North China Plain. The Crop Journal, 2018(6):669-676.
[6] Bian D H, Jia G P, Cai L J , et al. Effects of tillage practices on root characteristics and root lodging resistance of maize. Field Crops Research, 2016,185:89-96.
[7] Han J N, Wang L F, Zheng H Y , et al. ZD958 is a low nitrogen-efficient maize hybrid at the seedling stage among five maize and two teosinte lines. Planta, 2015,242:935-949.
[8] 朱韵哲, 马国胜, 张仁和 , 等. 不同产量水平玉米品种光合产物的积累与分配比较. 西北农业学报, 2013,22(5):20-24.
[9] 李尚中, 樊廷录, 王勇 , 等. 不同覆膜集雨种植方式对旱地玉米叶绿素荧光特性、产量和水分利用效率的影响. 应用生态学报, 2014,25(2):458-466.
[10] 宋振伟, 郭金瑞, 任军 , 等. 耕作方式对东北雨养区农田水热与玉米光合特性的影响. 应用生态学报, 2013,24(7):1900-1906.
[11] 张镇涛, 杨晓光, 高继卿 , 等. 气候变化背景下华北平原夏玉米适宜播期分析. 中国农业科学, 2018,51(17):3258-3274.
[12] 张睿昊, 刘海军 . 气象因子和土壤水分变化对河北省夏玉米产量的影响. 南水北调与水利科技, 2012,10(4):133-146.
[13] 刘淑云, 董树亭, 胡昌浩 , 等. 玉米产量和品质与生态环境的关系. 作物学报, 2005,31(5):571-576.
[14] 刘永红, 何文铸, 杨勤 , 等. 花期干旱对玉米籽粒发育的影响. 核农学报, 2007,21(2):181-185.
[15] 刘素玲 . 生态因子对玉米产量构成因素的影响分析. 陕西农业科学, 2007(4):43-46.
[16] 侯玉虹, 陈传永, 郭志强 , 等. 春玉米不同产量群体叶面积指数动态特征与生态因子资源量的分配特点. 应用生态学报, 2009,20(1):135-142.
[17] 曹士亮, 于芳兰, 王成波 , 等. 降水量与积温对玉米气象产量影响的综合分析. 作物杂志, 2009(3):62-65 .
[18] 李海燕 . 年际间气象因子变化对玉米生长发育及产量的影响. 沈阳:沈阳农业大学, 2013.
[19] 李绍长, 白萍, 吕新 , 等. 不同生态区及播期对玉米籽粒灌浆的影响. 作物学报, 2003,29(5):775-778.
[20] 肖荷霞, 陈建忠, 席国成 , 等. 黑龙港类型区气象生态因子与夏玉米产量性状关系的研究. 华北农学报, 1999,14(S1):126-130.
[21] 姚小英, 李晓薇, 王禹锡 , 等. 西北干旱区旱地玉米叶面积指数与气象因子及生物量的关系. 自然资源学报, 2012,27(11):1881-1889.
[22] 李海燕, 史振声, 李凤海 , 等. 玉米群体结构对年际间气象因子变化的反应. 干旱地区农业研究, 2013,31(6):50-56.
[23] Hamzei J . Nitrogen rate applied affects dry matter translocation and performance attributes of wheat under deficit irrigation. Journal of Plant Nutrition, 2018,41(7):1-11.
[24] 周琦, 张富仓, 李志军 , 等. 施氮时期对夏玉米生长、干物质转运与产量的影响. 干旱地区农业研究, 2018,36(1):76-82.
[25] Ali S, Xu Y Y, Jia Q M , et al. Cultivation techniques combined with deficit irrigation improves winter wheat photosynthetic characteristics,dry matter translocation and water use efficiency under simulated rainfall conditions. Agricultural Water Management, 2018,142:75-83.
[26] Li Q, Kong F L, Zhang J L , et al. Differential responses of maize hybrids for growth and nitrogen utilization to applied nitrogen. International Journal of Agriculture and Biology, 2019,6:1147-1158.
[27] 邓飞, 王丽, 刘丽 , 等. 不同生态条件下栽培方式对水稻干物质生产和产量的影响. 作物学报, 2012,38(10):1930-1942.
[28] 杨国庆 . 我国玉米生产效率差异性研究—基于四个玉米主产区的实证分析. 杨凌:西北农林科技大学, 2013.
[1] Wang Li, Wang Zuoping, Zhang Zhongbao, Bai Ling, Wu Zhongyi. Screening of Strongly Expressed Promoters in Immature Maize Kernels [J]. Crops, 2020, 36(4): 114-120.
[2] Zhang Xiaoyan, Wang Xiaonan, Cao Kun, Sun Yufeng. Correlation Analysis of Fiber Yield and Yield Components in Five Industrial Hemp Varieties (Lines) [J]. Crops, 2020, 36(4): 121-126.
[3] Qin Hongde, Rong Yihua, Huang Xiaoli, Hu Aibing, Zhou Jiahua, Yan Xianhui, Li Wei, Zhang Xianhong, Li Hongju, Yang Guozheng. Responses of Cotton to Planting Densities and Nitrogen Rates under Direct Seeding in Summer with Simplified Fertilization [J]. Crops, 2020, 36(4): 127-134.
[4] Cao Changlin, Lü Huiqing, Hao Zhiping, Gao Xiang, Zhou Zhongyu. Effects of Foliar Spraying Zinc and Boron Fertilizer on the Yield and Quality of Jin Buckwheat (Bitter) No.5 [J]. Crops, 2020, 36(4): 135-142.
[5] Fan Yuanyuan, Wu Haimei, Pang Lei, Lu Jianlong, Xia Bowen, Yang Xuhai. Effects of Straw Mulching on Wheat Yield in Different Ecological Regions in Northern Semi-Arid Areas of China Based on Meta Analysis [J]. Crops, 2020, 36(4): 143-149.
[6] Zheng Fei, Wang Lixia, Liu Ruixiang, Kong Lingjie, Chen Yanping, Yuan Jianhua, Cui Yakun. Morphological and Physiological Differences of Maize Inbred Lines at Seedling Stage under Waterlogging Stress [J]. Crops, 2020, 36(4): 158-163.
[7] Hu Jifang. Effects of Water Control on Growth and Development and Yield of Different Upland Rice Varieties during Jointing-Booting Stage [J]. Crops, 2020, 36(4): 178-182.
[8] Chen Ying, Du Baozhi, Wang Wenxuan, Lu Cuihua, Liu Chun’an, Dai Guijin, Yu Guangxing, Liu Xianping, Gong Diankai. Investigation on the Pattern of Fertilizer and Density for Rice Stable Yield under Low Nitrogen Rate Cultivation in Different Regions of Liaoning Province [J]. Crops, 2020, 36(4): 183-187.
[9] Yang Yongqing, Gao Fangfang, Ma Yajun, Chen Xin, Zhang Jie. Effects of Different Fertilizer Treatments on Yield, Quality and Economic Benefit of Foxtail Millet in Dry Farming Area of Shanxi Province [J]. Crops, 2020, 36(4): 195-201.
[10] Yang Bin, Yan Xue, Wen Hongwei, Wang Shuguang, Lu Lahu, Fan Hua, Jing Ruilian, Sun Daizhen. Study on the Evaluation of Stay-Green Traits of Wheat and Its Correlation with Yield-Related Traits under Different Water Conditions [J]. Crops, 2020, 36(4): 45-52.
[11] Chen Weiguo, Zhang Zheng, Shi Yugang, Cao Yaping, Wang Shuguang, Li Hong, Sun Daizhen. Drought-Tolerance Evaluation of 211 Wheat Germplasm Resources [J]. Crops, 2020, 36(4): 53-.
[12] Yuan Wenya, Zhao Xiaolei, Zhou Xumei, Wang Lei, Peng Bo, Wang Yi. The Development of waxy Gene Function Marker and Its Application in Waxy Maize Breeding [J]. Crops, 2020, 36(4): 99-106.
[13] Song Xiao, Huang Chenchen, Huang Shaomin, Zhang Keke, Yue Ke, Zhang Shuiqing, Guo Doudou, Zhang Yuting. Effects of Tillage and Organic Fertilization Modes on Soil Physical and Chemical Properties and Wheat Yield [J]. Crops, 2020, 36(3): 102-108.
[14] Zhang Yang, Zhang Wei, Zhao Weijun, Shao Rongfeng, Wang Guan, Xue Dingding, Li Jinmei. Variety Screening and Study of Cultivation Technology for Forage Triticale Varieties Based on Principal Component and Grey Relation Analysis [J]. Crops, 2020, 36(3): 117-124.
[15] Lü Guangde, Yin Fuwei, Sun Yingying, Qian Zhaoguo, Xu Jiali, Li Ning, Xue Lina, Wu Ke. Effects of Different Seeding Rates on Yield, Dry Matter Accumulation and Distribution of Linmai 4 [J]. Crops, 2020, 36(3): 142-148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!