Crops ›› 2020, Vol. 36 ›› Issue (5): 17-22.doi: 10.16035/j.issn.1001-7283.2020.05.003
Previous Articles Next Articles
Zhang Xiao1(), Li Man1, Lu Chengbin1, Wu Hongya1, Jiang Wei1, Gao Derong1,2()
[1] | Seilmeier W, Belitz H D, Wieser H. Separation and quantitative determination of high-molecular-weight subunits of glutenin from different wheat varieties and genetic variants of the variety Sicco. European Food Research and Technology, 1991,192(2):124-129. |
[2] |
Halford N G, Field J M, Blair H, et al. Analysis of HMW glutenin subunits encoded by chromosome 1A of bread wheat (Triticum aestivum L.) indicates quantitative effects on grain quality. Theoretical and Applied Genetics, 1992,83(3):373-378.
doi: 10.1007/BF00224285 pmid: 24202521 |
[3] |
Branlard G, Dardevet M. Diversity of grain protein and bread wheat quality:II. Correlation between high molecular weight subunits of glutenin and flour quality characteristics. Journal of Cereal Science, 1985,3(4):345-354.
doi: 10.1016/S0733-5210(85)80007-2 |
[4] |
Weegels P L, Hamer R J, Schofield J D. Functional properties of wheat glutenin. Journal of Cereal Science, 1996,23(1):1-17.
doi: 10.1006/jcrs.1996.0001 |
[5] |
Shewry P R, Halford N G. Cereal seed storage proteins:Structures,properties and role in grain utilization. Journal of Experimental Botany, 2002,53(370):947-958.
doi: 10.1093/jexbot/53.370.947 pmid: 11912237 |
[6] |
Payne P I. Genetics of wheat storage proteins and the effect of allelic variation of bread-making quality. Annual Review of Plant Physiology, 1987,38(1):141-153.
doi: 10.1146/annurev.pp.38.060187.001041 |
[7] |
Shewry P R, Tatham A S. The prolamin storage proteins of cereal seeds:structure and evolution. Biochemical Journal, 1990,267(1):1-12.
doi: 10.1042/bj2670001 pmid: 2183790 |
[8] |
Shewry P R, Halford N G, Tatham A S. High molecular weight subunits of wheat glutenin. Journal of Cereal Science, 1992,15(2):105-120.
doi: 10.1016/S0733-5210(09)80062-3 |
[9] |
MacRitchie F, Lafiandra D. Use of near-isogenic wheat lines to determine protein composition-functionality relationships. Cereal Chemistry, 2001,78(5):501-506.
doi: 10.1094/CCHEM.2001.78.5.501 |
[10] |
He Z H, Liu L, Xia X C, et al. Composition of HMW and LMW glutenin subunits and their effects on dough properties,pan bread,and noodle quality of Chinese bread wheats. Cereal Chemistry, 2005,82(4):345-350.
doi: 10.1094/CC-82-0345 |
[11] |
Liu L, He Z, Yan J, et al. Allelic variation at the Glu-1 and Glu-3 loci,presence of the 1B.1R translocation,and their effects on mixographic properties in Chinese bread wheats. Euphytica, 2005,142(3):197-204.
doi: 10.1007/s10681-005-1682-4 |
[12] | Jin H, Zhang Y, Li G Y, et al. Effects of allelic variation of HMW-GS and LMW-GS on mixograph properties and Chinese noodle and steamed bread qualities in a set of Aroona near-isogenic wheat lines. Journal of Cereal Science, 2013,57:146-152. |
[13] |
刘悦, 杨足君, 李光蓉, 等. 四川南部和重庆地区小麦地方品种的高分子量谷蛋白亚基组成分析. 麦类作物学报, 2006,26(4):47-50.
doi: 10.7606/j.issn.1009-1041.2006.04.151 |
[14] |
董永梅, 杨欣明, 柴守诚, 等. 中国小麦代表性地方品种高分子量麦谷蛋白亚基组成分析. 麦类作物学报, 2007,27(5):820-824.
doi: 10.7606/j.issn.1009-1041.2007.05.201 |
[15] | 杨恩年, 张洁, 杨武云, 等. 六倍体普通小麦高分子量谷蛋白亚基Glu-A1和Glu-B1共同缺失材料研究初报. 西南农业学报, 2007,20(2):293-295. |
[16] |
Lawrence G J, MacRitchie F,Wrigley C W. Dough and baking quality of wheat lines deficient in glutenin subunits controlled by the Glu-A1,Glu-B1 and Glu-D1 loci. Journal of Cereal Science, 1988,7:109-112.
doi: 10.1016/S0733-5210(88)80012-2 |
[17] |
D′Ovidio R, Porceddu E, Lafinadra D. PCR analysis of genes encoding allelic variants of high molecular weight glutenin subunits at the Glu-D1 locus. Theoretical and Applied Genetics, 1994,88:175-180.
doi: 10.1007/BF00225894 pmid: 24185923 |
[18] |
Gu Y Q, Salse J, ColemanDerr D,et al. Types and rates of sequence- evolution at the high molecular weight glutenin locus in hexaploid wheat and its ancestral genomes. Genetics, 2006,174(3):1493-1504.
doi: 10.1534/genetics.106.060756 pmid: 17028342 |
[19] |
Forde J, Malpica J M, Halford N G, et al. The nucleotide sequence of a HMW glutenin subunit gene located on chromosome 1A of wheat (Triticum eastivum L.). Nucleic Acids Research, 1985,13(19):6817-6832.
doi: 10.1093/nar/13.19.6817 pmid: 2997729 |
[20] | 朱银锋. 小麦品种小偃54高分子量麦谷蛋白亚基1Bx14缺失突变体的产生及缺失机理分析. 北京:中国科学院遗传与发育生物学研究所, 2005. |
[21] | 郭小敏. 小麦品种小偃54一套HMW-GS缺失突变体系的创建和1By15亚基缺失突变机理及功能分析. 北京:中国科学院遗传与发育生物学研究所, 2008. |
[22] |
Yuan Z W, Chen Q J, Zhang L Q, et al. Molecular characterization of two silenced y-type genes for Glu-B1 in Triticum aestivum ssp. yunnanese and ssp. Tibetanum. Journal of Integrative Plant Biology, 2009,51(1):93-99.
doi: 10.1111/j.1744-7909.2008.00775.x |
[23] | 王宏霞. 小麦HMW-GS 1Bx7缺失机理及其对加工品质的影响研究. 北京:中国科学院, 2012. |
[24] | 郑雯. 野生二粒小麦1Ay高分子量谷蛋白亚基的分子克隆及其“表达-沉默”机理探讨. 成都:四川农业大学, 2008. |
[25] | 李宁. 高分子量麦谷蛋白1Dx2+1Dy12亚基缺失的分子机理及其与小麦加工品质关系的研究. 北京:中国科学院遗传与发育生物学研究所, 2005. |
[26] |
Uthayakumaran S, Lukow O M, Jordan M C, et al. Development of genetically modified wheat to assess its dough functional properties. Molecular Breeding, 2003,11(4):249-258.
doi: 10.1023/A:1023461305848 |
[27] |
Don C, Mann G, Bekes F, et al. HMW-GS affect the properties of glutenin particles in GMP and thus flour quality. Journal of Cereal Science, 2006,44(2):127-136.
doi: 10.1016/j.jcs.2006.02.005 |
[28] |
张平平, 马鸿翔, 姚金保, 等. Glu-1位点缺失对小麦麦谷蛋白聚合体粒度分布及面团特性的影响. 作物学报, 2015,41(1):22-30.
doi: 10.3724/SP.J.1006.2015.00022 |
[29] |
张平平, 马鸿翔, 姚金保, 等. 高分子量谷蛋白单亚基缺失对软质小麦宁麦9号加工品质的影响. 作物学报, 2016,42(5):633-640.
doi: 10.3724/SP.J.1006.2016.00633 |
[30] |
张纪元, 张平平, 姚金保, 等. 以EMS诱变创制软质小麦宁麦9号高分子量谷蛋白亚基突变体. 作物学报, 2014,40(9):1579-1584.
doi: 10.3724/SP.J.1006.2014.01579 |
[31] |
Ma M, Yan Y, Huang L, et al. Virus-induced gene-silencing in wheat spikes and grains and its application in functional analysis of HMW-GS-encoding genes. BMC Plant Biology, 2012,12(1):141.
doi: 10.1186/1471-2229-12-141 |
[32] |
Zhu J T, Hao P C, Chen G X, et al. Molecular cloning,phylogenetic analysis,and expression profiling of endoplasmic reticulum molecular chaperone BiP genes from bread wheat (Triticum aestivum L.). BMC Plant Biology, 2014,14(1):260.
doi: 10.1186/s12870-014-0260-0 |
[33] |
Liu H Y, Wang K, Xiao L L, et al. Comprehensive identification and bread-Making quality evaluation of common wheat somatic variation line AS208 on glutenin composition. PLoS ONE, 2016,11(1):e0146933.
pmid: 26765256 |
[34] | 刘会云, 王婉晴, 李欣, 等. 小麦突变体AS208中Glu-B1位点缺失对籽粒中蛋白体形成和储藏蛋白合成与加工相关基因表达的影响. 作物学报, 2017,43(5):691-700. |
[35] |
Gao X, Liu T H, Ding M Y, et al. Effects of HMW-GS Ax1 or Dx2 absence on the glutenin polymerization and gluten micro structure of wheat (Triticum aestivum L. ). Food Chemistry, 2018,240:626-633.
doi: 10.1016/j.foodchem.2017.07.165 pmid: 28946321 |
[36] |
Yang Y S, Li S M, Zhang K P, et al. Efficient isolation of ion beam-induced mutants for homoeologousloci in common wheat and comparison of the contributions of Glu-1 loci to gluten functionality. Theoretical and Applied Genetics, 2014,127:359-372.
doi: 10.1007/s00122-013-2224-4 |
[37] |
Graveland A, Bosveld P, Lichtendonk W J, et al. A model for the molecular structure of the glutenins from wheat flour. Journal of Cereal Science, 1985,3(1):1-16.
doi: 10.1016/S0733-5210(85)80029-1 |
[38] | Tatham A S, Shewry P R, Belton P S. Structural studies of cereal prolamins,including wheat gluten. Advances in Cereal Science and Technology, 1990,10:1-78. |
[39] | Wang D W, Li F, Cao S H, et al. Genomic and functional genomics analyses of gluten proteins and prospect for simultaneous improvement of end-use and health-related traits in wheat. Theoretical and Applied Gennetics, 2020,133(5):1521-1539. |
[40] | Wrigley C W, Asenstorfer R, Batey I, et al. The biochemical and molecular basis of wheat quality//Carver B F. Wheat science and trade. New Jersey: Wiley-Blackwell, 2009: 495-520 . |
[41] |
Ram S, Shoran J, Mishra B. Nap Hal,an Indian landrace of wheat,contains unique genes for better biscuit making quality. Journal of Plant Biochemistry and Biotechnology, 2007,16(2):83-86.
doi: 10.1007/BF03321979 |
[42] |
Yue S J, Li H, Li Y W, et al. Generation of transgenic wheat lines with altered expression levels of 1Dx5 high-molecular weight glutenin subunit by RNA interference. Journal of Cereal Science, 2008,47(2):153-161.
doi: 10.1016/j.jcs.2007.03.006 |
[43] | 武茹. 小麦HMW-GS缺失种质资源的筛选鉴定及其品质效应研究. 扬州:扬州大学, 2011. |
[44] |
Mondal S, Tilley M, Alviola J N, et al. Use of near-isogenic wheat lines to determine the glutenin composition and functionality requirements for flour tortillas. Journal of Agricultural and Food Chemistry, 2008,56(1):179-184.
doi: 10.1021/jf071831s pmid: 18072743 |
[45] |
Zhang L, Chen Q, Su M, et al. High molecular weight glutenin subunits deficient mutants induced by ion beam and the effects of Glu-1 loci deletion on wheat quality properties. Journal of the Science of Food and Agriculture, 2015,96(4):1289-1296.
doi: 10.1002/jsfa.7221 pmid: 25886243 |
[46] |
Zhang X, Zhang B Q, Wu H Y, et al. Effect of high-molecular-weight glutenin subunit deletion on soft wheat quality properties and sugar-snap cookie quality estimated through near-isogenic lines. Journal of Integrative Agriculture, 2018,17(5):1066-1073.
doi: 10.1016/S2095-3119(17)61729-5 |
[47] | Belitz H D, Grosch W, Schieberle P. Food chemistry. Berlin:Springer Verlag, 2009: 670-710. |
[48] | 陈锋, 李根英, 耿洪伟, 等. 小麦籽粒硬度及其分子遗传基础研究回顾与展望. 中国农业科学, 2005(6):1088-1094. |
[49] |
Chen F, Li H H, Cui D Q. Discovery,distribution and diversity of Puroindoline-D1 genes in bread wheat from five countries (Triticum aestivum L.). BMC Plant Biology, 2013,13.
doi: 10.1186/1471-2229-13-211 pmid: 24330683 |
[50] |
Beasley H L, Uthayakumaran S, Stoddard F L, et al. Synergistic and additive effects of three high molecular weight glutenin subunit loci. II. Effects on wheat dough functionality and end-use quality. Cereal Chemistry, 2002,79(2):301-307.
doi: 10.1094/CCHEM.2002.79.2.301 |
[51] |
Zhang P P, Jondiko T O, Tilley M, et al. Effect of high molecular weight glutenin subunit composition in common wheat on dough properties and steamed bread quality. Journal of the Science of Food and Agriculture, 2014,94(13):2801-2806.
doi: 10.1002/jsfa.6635 |
[1] | Liu Wenting, Zhang Xinjun, Yang Cai, Bai Jing, Yang Xiaohong, Zhou Haitao. Analysis of Nutritional Quality Differences and Formation Factors of Naked Oat [J]. Crops, 2020, 36(5): 140-147. |
[2] | Zheng Di, Wen Chunyan, Shen Xianhua, Hu Biaolin, Che Jüqin, Xiong Yunhua, Wang Zhiquan, Wu Yanshou. Analysis on Variation in Rice Yield Components and Quality at Different Altitudes in Tibet [J]. Crops, 2020, 36(5): 199-203. |
[3] | Wang Furong, Zhang Jianxue, Guo Minjiang, Zhang Yahong, Fan Tiping, Wang Yahong, Zhang Yan, Pei Guoping, Lei Jianming. Effects of Post-Emergence Herbicide Spraying at Different Stages on Weed Control, and Yield and Quality of Winter Rapeseed [J]. Crops, 2020, 36(5): 204-208. |
[4] | Lu Xiaoling, He Ming, Zhang Kaixuan, Liao Zhiyong, Zhou Meiliang. Study on the Cloning and Transformation of Rhamnose Transferase FtF3GT1 Gene in Tartary Buckwheat [J]. Crops, 2020, 36(5): 33-40. |
[5] | Yang Xuele, Zhang Lu, Li Zhiqing, He Luqiu. Diversity Analysis of Tartary Buckwheat Germplasms Based on Phenotypic Traits [J]. Crops, 2020, 36(5): 53-58. |
[6] | Qin Hongde, Rong Yihua, Huang Xiaoli, Hu Aibing, Zhou Jiahua, Yan Xianhui, Li Wei, Zhang Xianhong, Li Hongju, Yang Guozheng. Responses of Cotton to Planting Densities and Nitrogen Rates under Direct Seeding in Summer with Simplified Fertilization [J]. Crops, 2020, 36(4): 127-134. |
[7] | Cao Changlin, Lü Huiqing, Hao Zhiping, Gao Xiang, Zhou Zhongyu. Effects of Foliar Spraying Zinc and Boron Fertilizer on the Yield and Quality of Jin Buckwheat (Bitter) No.5 [J]. Crops, 2020, 36(4): 135-142. |
[8] | Fan Yuanyuan, Wu Haimei, Pang Lei, Lu Jianlong, Xia Bowen, Yang Xuhai. Effects of Straw Mulching on Wheat Yield in Different Ecological Regions in Northern Semi-Arid Areas of China Based on Meta Analysis [J]. Crops, 2020, 36(4): 143-149. |
[9] | Liu Dongjun, Song Weifu, Yang Xuefeng, Zhao Lijuan, Song Qingjie, Zhang Chunli, Xin Wenli, Xiao Zhimin. Progress of Wheat Fhb1 Gene Locating and Cloning and Its Utilization in the Resistance Breeding [J]. Crops, 2020, 36(4): 16-20. |
[10] | Yang Yongqing, Gao Fangfang, Ma Yajun, Chen Xin, Zhang Jie. Effects of Different Fertilizer Treatments on Yield, Quality and Economic Benefit of Foxtail Millet in Dry Farming Area of Shanxi Province [J]. Crops, 2020, 36(4): 195-201. |
[11] | Zhang Qian, Li Yaofa, Wang Shulin, Wang Yan, Feng Guoyi, Lin Yongzeng, Liang Qinglong, Lei Xiaopeng, Qi Hong. Effects of Strip-Planting of Cotton-Wheat on Cotton Aphid [J]. Crops, 2020, 36(4): 206-210. |
[12] | Yang Ziguang, Guo Lilei, Zhang Ke, Sun Junwei, Meng Limei. Development Trend of the Major Traits of Winter Wheat Varieties (Lines) in the Huang-Huai Dryland [J]. Crops, 2020, 36(4): 30-36. |
[13] | Wang Zhongqiu, Ying Pengfei, Chen Mengtao, He Qiongying, Hu Xin. Analysis of Grain and Quality Traits of Chromosome Arm Substitution Lines of Triticum dicoccoides in the Background of Triticum aestivum [J]. Crops, 2020, 36(4): 37-44. |
[14] | Yang Bin, Yan Xue, Wen Hongwei, Wang Shuguang, Lu Lahu, Fan Hua, Jing Ruilian, Sun Daizhen. Study on the Evaluation of Stay-Green Traits of Wheat and Its Correlation with Yield-Related Traits under Different Water Conditions [J]. Crops, 2020, 36(4): 45-52. |
[15] | Chen Weiguo, Zhang Zheng, Shi Yugang, Cao Yaping, Wang Shuguang, Li Hong, Sun Daizhen. Drought-Tolerance Evaluation of 211 Wheat Germplasm Resources [J]. Crops, 2020, 36(4): 53-63. |
|