Crops ›› 2020, Vol. 36 ›› Issue (5): 199-203.doi: 10.16035/j.issn.1001-7283.2020.05.030

Previous Articles     Next Articles

Analysis on Variation in Rice Yield Components and Quality at Different Altitudes in Tibet

Zheng Di1,2(), Wen Chunyan1(), Shen Xianhua1, Hu Biaolin1, Che Jüqin2, Xiong Yunhua1, Wang Zhiquan1, Wu Yanshou1()   

  1. 1Rice Research Institute, Jiangxi Academy of Agricultural Sciences/National Engineering Laboratory for Rice (Nanchang), Nanchang 330200, Jiangxi, China
    2Chayu Agro-Tech Extension and Service Station, Linzhi 860600, Tibet, China
  • Received:2020-03-30 Revised:2020-06-03 Online:2020-10-15 Published:2020-10-12
  • Contact: Wu Yanshou E-mail:744454039@qq.com;1078158827@qq.com;yanshou@126.com

Abstract:

To ascertain variation in yield components and quality at different altitudes and to improve rice production level in Tibet, two japonica rice varieties, WT87 and WJ313, were planted at three altitudes of 1 480, 1 600 and 2 020m to analyze the grain yield formation and rice quality. The results showed that the effective panicles per plant, panicle length, filled grains per panicle, 1000-grain weight and harvest yield all decreased with the increase of altitude, among which the effective panicles per plant and filled grains per panicle declined significantly, while the changing trends of seed setting rate varied at the different altitudes. As for the appearance quality, the effects of the altitude on grain size and brown rice rate were limited, and the milled rice rate trended to a little increase with the increase of altitude. Chalkiness and chalky rice rate of different varieties showed different changing trends. In cooking quality, the gel consistency decreased with the increase of altitude. The breakdown of RVA profile characteristic value showed decreasing trends with the increase of altitude, whereas the setback value showed an opposite trend. The contents of protein and amylose increased with the increasing of altitudes, and the eating quality of rice increased with the increasing of altitude also.

Key words: Rice, High altitude region, Grain yield, Rice quality, RVA profile characteristic value

Table 1

Comparison of rice yield components and yield at different altitudes"

品种
Variety
海拔
Altitude
(m)
穗长
Panicle length
(cm)
单株有效穗数
Effective panicles
per plant
穗实粒数
Filled grains
per panicle
结实率
Seed setting
rate (%)
千粒重
1000-grain
weight (g)
理论产量
Theoretical yield
(kg/hm2)
实际产量
Harvest yield
(kg/hm2)
WT87 1 480 17.5±3.3a 24±2a 132±16a 92.6±1.1ab 22.5±0.2b 9 480±149a 7 095
1 600 15.7±0.5a 19±2b 105±6b 95.3±0.6a 23.2±0.4a 6 630±330b 7 005
2 020 13.3±0.2b 10±1c 93±5c 89.5±4.5b 21.5±0.5c 5 955±322c 5 475
WJ313 1 480 15.5±0.4a 27±4a 129±12a 78.4±4.8a 26.4±1.0a 10 875±907a 6 825
1 600 15.4±0.4a 19±2b 128±13a 78.3±12.8a 27.2±0.8a 8 025±158b 6 705
2 020 13.2±0.2b 9±2c 93±14b 84.3±2.8a 24.7±2.4a 6 180±1 620c 5 445

Table 2

Comparison of rice appearance quality at different altitudes"

品种
Variety
海拔
Altitude (m)
米长
Length (mm)
米宽
Width (mm)
糙米率
Brown rice rate (%)
精米率
Milled rice rate (%)
整精米率
Head rice rate (%)
垩白粒率
Chalky rice rate (%)
垩白度
Chalkiness (%)
WT87 1 480 4.96±0.01b 2.44±0.00b 79.8±1.0a 71.1±0.9b 74.5±3.78b 15.2±1.8a 5.3±1.2a
1 600 5.12±0.00a 2.51±0.00a 80.5±0.2a 73.8±0.3a 78.6±3.19b 11.9±1.2b 3.5±0.5b
2 020 4.96±0.01b 2.43±0.01b 80.3±0.2a 74.4±0.3a 93.3±1.63a 5.2±1.7c 1.7±0.7c
WJ313 1 480 4.76±0.00b 2.86±0.01b 81.5±0.5a 72.1±1.0b 72.6±0.11b 25.9±1.4b 11.1±1.0b
1 600 4.82±0.01a 2.91±0.02a 82.5±0.1a 73.8±1.0b 68.1±6.24b 37.9±1.7a 13.9±0.1a
2 020 4.78±0.01b 2.86±0.01b 82.0±0.1a 76.5±0.2a 88.8±1.15a 23.7±3.2b 11.9±1.8b

Table 3

Comparison of rice cooking quality at different altitudes"

品种
Variety
海拔
Altitude
(m)
胶稠度
Gel consistency
(mm)
碱消值(级)
Alkali digestibility
最高粘度
Peak
viscosity (cP)
热浆粘度
Through
viscosity (cP)
冷胶粘度
Final
viscosity (cP)
崩解值
Breakdown
(cP)
消减值
Setback
(cP)
蛋白质含量
Protein
(%)
直链淀粉含量
Amylose (%)
WT87 1 480 57.5±3.5a 7±0a 3 080±1a 2 076±5a 3 423±3a 1 005±4a 343±4c 4.8±0.1b 18.9±1.1ab
1 600 54.5±2.1a 7±0a 3 098±45a 2 117±71a 3 489±47a 981±26a 391±2b 6.6±0.0a 17.5±0.4b
2 020 42.5±2.1b 7±0a 2 505±29b 1 784±23b 3 096±23b 721±52b 592±6a 6.8±0.9a 20.6±0.6a
WJ313 1 480 54.5±2.1a 7±0a 2 974±51a 1 964±71a 3 191±59a 1 010±20a 217±9c 5.2±0.0b 19.2±0.7a
1 600 52.5±0.7a 7±0a 2 897±158a 2 042±70a 3 232±113a 855±88b 336±45b 5.3±0.2b 20.2±0.4a
2 020 43.0±2.8b 7±0a 2 463±177b 1 719±88b 2 967±165a 744±90b 504±13a 6.0±0.1a 21.3±0.6a

Table 4

Score of rice appearance and taste at different altitudes"

品种
Variety
海拔
Altitude (m)
外观
Appearance
口感
Taste
综合评分
Final score
WT87 1 480 4.0 4.9 57.9
1 600 4.4 5.0 57.4
2 020 5.4 5.7 63.3
WJ313 1 480 4.2 5.1 61.0
1 600 4.6 5.4 64.5
2 020 5.5 5.9 66.9
[1] 国家统计局. 国家统计局关于2019年粮食产量数据的公告. (2019-12-06)[2020-03-20]. http://www.stats.gov.cn/tjsj/zxfb/201912/t20191206_1715827.html.
[2] 张谊光. 我国不同气候生态型水稻品种的种植上限及其温度条件. 自然资源, 1983(2):65-72.
[3] 靳百慧, 孙婷, 潘磊, 等. 海拔变化对元阳梯田水稻叶片结构及叶绿素荧光特征的影响. 分子植物育种, 2019,17(22):7467-7475.
[4] 孙婷, 刘涛, 靳百慧, 等. 不同海拔水稻耐冷特性研究. 云南农业大学学报(自然科学), 2016,31(3):387-391.
[5] Zhu Z H, Kim K Y, Yuan P R, et al. Starch RVA profile properties for cold tolerant and sensitive cultivars of japonica rice at different altitudes. Agricultural Science & Technology, 2011,2(12):1831-1836.
[6] 李静, 袁继超, 蔡光泽. 海拔对水稻产量和品质的影响研究进展. 中国农学通报, 2013,29(24):1-4.
[7] 何张伟. 不同海拔条件下高海拔粳稻产量构成差异分析. 中国稻米, 2015,21(5):75-78.
doi: 10.3969/j.issn.1006-8082.2015.05.019
[8] 张佳妮, 邓小书, 韩龙植, 等. 海拔及栽培措施对杂交中籼组合冈优36产量的影响. 杂交水稻, 2017,32(5):35-39.
[9] 李俊青, 刘从军, 袁继超, 等. 攀西地区稻米垩白的变异及其影响因素初探. 四川农业大学学报, 2004,22(1):26-29.
[10] 邹茜, 邵源梅, 黄平, 等. 不同生态型低AC稻米蒸煮和食味品质特性研究. 西南农业学报, 2019,32(11):2514-2520.
[11] 高利伟, 徐增让, 成升魁, 等. 西藏粮食安全状况及主要粮食供需关系研究. 自然资源学报, 2017,32(6):951-960.
[12] 国家质量监督检验检疫总局. GB/T 17891-2017 优质稻谷. 北京: 中国标准出版社, 2017.
[13] 罗学刚, 曾明颖, 邹琦, 等. 四川不同海拔稻田生态条件与杂交水稻生长发育及其应用研究. 应用与环境生物学报, 1999,5(2):142-146.
[14] Högy P, Poll C, Marhan S, et al. Impacts of temperature increase and change in precipitation pattern on crop yield and yield quality of barley. Food Chemistry, 2013,136:1470-1477.
doi: 10.1016/j.foodchem.2012.09.056
[15] 解保胜, 赵黎明, 那永光, 等. 温光条件与寒地水稻产量和源库特征的关系. 生态学杂志, 2016,35(4):917-924.
[16] 唐永红, 张嵩午, 高如嵩, 等. 温度对稻米品质的时段效应分析. 中国农业气象, 1997,18(1):9-13.
[17] 刘家富, 汪庆平, 黄兴琦. 不同海拔条件下稻米品质初步研究. 云南农业科技, 1986(5):27-30.
[18] 周广洽, 徐猛亮, 谭周, 等. 温光对稻米蛋白质及氨基酸含量的影响. 生态学报, 1997,17(5):537-542.
[19] 孟亚利, 周治国. 结实期温度与稻米品质的关系. 中国水稻科学, 1997,11(1):51-54.
[20] 段里成, 郭瑞鸽, 张坤, 等. 不同播期对直播早稻干物质积累的影响. 作物杂志, 2019(5):186-191.
[1] Cao Xiaochuang, Li Yefeng, Wu Longlong, Zhu Chunquan, Zhu Lianfeng, Zhang Junhua, Jin Qianyu. Effects of Organic Soluble Fertilizer on the Accumulation and Translocation of Dry Matter and Nitrogen of Rice [J]. Crops, 2020, 36(5): 110-118.
[2] Sun Qi, Geng Yanqiu, Jin Feng, Liu Lixin, Zheng Huantong, Guo Liying, Shao Xiwen. Effects of Sowing Dates on Yield, Dry Matter and Nitrogen Accumulation and Translocationin Organs after Anthesis of Direct Seeding Rice [J]. Crops, 2020, 36(5): 119-126.
[3] Luo Yuqiong, Yan Bo, Wu Ke, Xie Huimin, Liang He, Jiang Ligeng. Effects of No-Tillage and Straw Returning on Soil Fertility and Rice Yield in Farmland [J]. Crops, 2020, 36(5): 133-139.
[4] Kang Kai, Liu Lihua, Qin Meng, Zheng Guiping, Zhang Xuesong, Bai Chongyang, Zhao Shuang, Gao Xiaohui. Effects of Ridge Tillage of Double Depth and Planting Space on Photosynthesis, Yield and Panicle Traits of Rice [J]. Crops, 2020, 36(5): 164-169.
[5] Gong Yanlong, Lei Yue, Yan Zhiqiang, Liu Xuewei, Zhang Dashuang, Wu Jianqiang, Zhu Susong. Comprehensive Evaluation of Phenotype Genetic Diversity in Japonica Rice Germplasm Resources in Different Ecological Zones [J]. Crops, 2020, 36(5): 71-79.
[6] Dai Hongyan, Hua Jinsong. Understanding and Thinking about Ornamental Rice [J]. Crops, 2020, 36(4): 1-8.
[7] Hu Jifang. Effects of Water Control on Growth and Development and Yield of Different Upland Rice Varieties during Jointing-Booting Stage [J]. Crops, 2020, 36(4): 178-182.
[8] Chen Ying, Du Baozhi, Wang Wenxuan, Lu Cuihua, Liu Chun’an, Dai Guijin, Yu Guangxing, Liu Xianping, Gong Diankai. Investigation on the Pattern of Fertilizer and Density for Rice Stable Yield under Low Nitrogen Rate Cultivation in Different Regions of Liaoning Province [J]. Crops, 2020, 36(4): 183-187.
[9] Tian Rongcai, Gao Zhiqiang, Lu Junwei. Estimation of Crude Protein Content in Grain of Early Indica Rice Based on Canopy Spectrum [J]. Crops, 2020, 36(4): 188-194.
[10] Zhu Zhengbin, Yang yong, Feng Linhao, Lu Yan, Shen Xuelin, Liu Qiaoquan, Zhang Changquan. Study on Physicochemical Properties of Local Waxy Rice Varieties Yaxuenuo and Suyunuo from Taihu Lake Area [J]. Crops, 2020, 36(4): 91-98.
[11] Yang Jing, Gao Liang, Zhu Yi. Research Progress on Rice-Duck Farming [J]. Crops, 2020, 36(3): 1-6.
[12] Tian Yucong, Duan Menjun, Zhu Jie, Feng Xiangzhao, Gao Zhenzhen, Liu Zhangyong, Chen Fu, Jin Tao. Effects of Meteorological Conditions on Formation of High Quality Ratoon Rice [J]. Crops, 2020, 36(3): 125-131.
[13] Lai Rifang, Zheng Axiang, Luo Haowen, Wu Tiaoyan, Zhao Xuze, He Longxin, Wang Lianxiang, Tang Xiangru. Effects of Different Seedling Raising Methods on Seedling Quality and Physiological Characteristics of Machine-Transplanted Aromatic Rice [J]. Crops, 2020, 36(3): 137-141.
[14] Lü Guangde, Yin Fuwei, Sun Yingying, Qian Zhaoguo, Xu Jiali, Li Ning, Xue Lina, Wu Ke. Effects of Different Seeding Rates on Yield, Dry Matter Accumulation and Distribution of Linmai 4 [J]. Crops, 2020, 36(3): 142-148.
[15] Song Qiulai, Wang Qi, Feng Yanjiang, Sun Yu, Zeng Xiannan, Lai Yongcai. Effects of Paddy-Upland Rotation and Straw Returning on Soil Related Enzyme Activities in Cold Region [J]. Crops, 2020, 36(3): 149-153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!