Crops ›› 2021, Vol. 37 ›› Issue (2): 147-152.doi: 10.16035/j.issn.1001-7283.2021.02.021

;

Previous Articles     Next Articles

Effects of Different Row Spacings on Boll Characteristics and Fiber Quality of Machine Picked Cotton

Zhang Wen(), Liu Quanyi, Zeng Qingtao, Cai Xiaoli, Feng Yang, Lu Tao()   

  1. The 7th Division of Agricultural Science Institute, Xinjiang Production and Construction Corps, Kuitun 833200, Xinjiang, China
  • Received:2020-05-29 Revised:2021-02-24 Online:2021-04-15 Published:2021-04-16
  • Contact: Lu Tao E-mail:zhangwenshzu@163.com;380605364@qq.com

Abstract:

In this study, two cotton varieties “Z1112” and “Zhongmian 641” in the 7th division of Xinjiang Production and Construction Corps were used as the experimental materials and three row spacing patterns, six row spacing of one film (10cm+66cm+10cm+66cm+10cm), four row spacing of one film (76cm+10cm+76cm), and three row spacing of one film (76cm+76cm), were set up to study the effects of different row spacing patterns on the boll forming characteristics and fiber quality of cotton. The results showed that under the same cotton variety, the numbers of pre-summer bolls with three row spacing of one film and four row spacing of one film were more than six row spacing of one film, while the number of pre-summer bolls and inner bolls with six row spacing of one film was more than four row spacing of one film and three row spacing of one film. The three row spacing patterns were lower bolls > middle bolls > upper bolls. The bolls of middle bolls and lower bolls showed that the number of bolls per unit area of six rows per membrane was significantly higher than that of three rows per membrane but there was no significant difference between them. Three row spacing of one film was more conducive to cotton defoliation and bolling than the other two row spacing patterns but the pattern of different row spacing had no significant effect on cotton yield, fiber length, evenness index, micronaire value, and elongation and had some effects on specific breaking strength and short fiber index. Compared with the other two models, the three row spacing of one film pattern had the sufficient row spacing configuration which could give full play to the production potential of individuals and groups, significantly improve the boll number and boll weight per plant, and have a better defoliating effect and cotton fiber quality. Therefore, the three row spacing of one film configuration mode is suitable for popularization in this area.

Key words: Cotton, Row spacing configuration, Boll characteristics, Fiber quality

Table 1

Treatments of different row-spacing combinations"

处理
Treatment
棉花品种
Cotton variety
配置模式
Configuration
行距
Row space (cm)
株距
Plant distance(cm)
理论密度(株/hm2)
Theoretical density (plant/hm2)
T1 Z1112 一膜六行 10+66+10+66+10 9.5 279 000
T2 一膜四行 76+10+76 8.2 216 000
T3 一膜三行 76+76 8.2 162 000
T4 中棉641 一膜六行 10+66+10+66+10 9.5 279 000
T5 一膜四行 76+10+76 8.2 216 000
T6 一膜三行 76+76 8.2 162 000

Fig.1

Effects of different treatments on time distribution of cotton bolls Different lowercase letters indicate significant difference between treatments (P < 0.05). The same below"

Fig.2

Effects of different treatments on spatial distribution of cotton bolls (longitudinal)"

Fig.3

Effects of different treatments on spatial distribution of cotton bolls (transverse)"

Table 2

Effects of different treatments on cotton defoliation rate and bolling rate %"

处理
Treatment
脱叶率Defoliation percentage 吐絮率Bolling rate
施药后11d
11 days after spraying
施药后22d
22 days after spraying
施药前
Before spraying
施药后11d
11 days after spraying
施药后22d
22 days after spraying
T1 36.7c 89.1b 13.4a 41.4b 89.8ab
T2 47.2b 93.5ab 14.1a 43.5ab 90.4ab
T3 49.5b 94.7ab 12.4a 44.4a 93.3a
T4 50.7ab 89.3b 1.9b 21.4e 83.0c
T5 52.2ab 94.0ab 3.2b 27.3d 84.8bc
T6 56.2a 96.6a 1.0b 35.3c 90.7ab

Table 3

Effect of different treatments on cotton yield and component factors"

处理
Treatment
单株铃数
Number of bolls per plant
株数(株/hm2)
Plant numbers per hectare
总铃数(×104/hm2)
Total boll numbers
单铃重
Boll mass (g)
衣分
Lint percentage (%)
子棉产量
Seed cotton yield (kg/hm2)
T1 5.7c 228 310a 130.2a 6.3b 44.3a 5232a
T2 8.6b 169 589b 145.8a 6.1bc 44.3a 5318a
T3 10.7a 126 954c 135.8a 6.8a 44.1a 5294a
T4 6.4c 227 966a 145.9a 5.7d 42.7b 4332b
T5 7.8b 167 416b 130.6a 5.8cd 43.2ab 4289b
T6 11.3a 124 887c 141.5a 6.4ab 42.8b 4449b

Table 4

Effects of different treatments on cotton fiber quality"

处理
Treatment
绒长
Fiber length (mm)
整齐度指数
Uniformity index (%)
马克隆值
Micronaire value
断裂比强度
Specific strength (cN/tex)
伸长率
Elongation (%)
短纤维指数
Short fiber index (%)
T1 31.2b 87.0ab 4.0a 33.9b 7.0a 6.7a
T2 31.6b 87.3a 4.1a 35.2a 7.1a 6.7a
T3 31.3b 86.3abc 4.2a 35.8a 6.9a 6.6ab
T4 33.9a 85.4c 4.5a 34.9ab 6.9a 6.3bc
T5 33.1a 85.1c 4.6a 36.1a 6.9a 6.0d
T6 33.9a 85.9bc 4.6a 35.6a 7.0a 6.0d
[1] 张山鹰. 新疆机采棉发展现状及发展方向的思考. 农业工程, 2012,2(7):1-6.
[2] 谭宝莲, 亚力坤·吐尔洪. 新疆机采棉与手摘棉的成本质量对比研究. 棉纺织技术, 2015(3):73-76.
[3] 梁亚军, 李雪源, 龚照龙, 等. 新疆快速发展机采棉前后存在的问题比较及对策. 棉花科学, 2017,39(2):2-5.
[4] 孙巍, 杨宝玲, 高振江, 等. 浅析我国棉花机械采收现状及制约因素. 中国农机化学报, 2013,34(6):9-13.
[5] 李岩, 陈契, 马丽芸, 等. 新疆机采棉品质现状与分析. 棉纺织技术, 2016,44(2):4-9.
[6] 齐海坤, 严根土, 王宁, 等. 株型育种在机采棉应用中的研究进展. 中国农业信息, 2016(2):75-77.
[7] 宋敏. 新疆棉花主栽品种机采特性的分析. 乌鲁木齐:新疆农业大学, 2015.
[8] 赵会薇. 机采棉品种选育现状. 中国种业, 2013(9):40-41.
[9] 廖凯, 高振江, 孙巍, 等. 农艺条件对机采棉品质的影响分析. 中国棉花, 2014,41(11):16-20.
doi: 1000-632X(2014)11-0016-04
[10] 徐新霞. 行距配置对机采棉花产量形成及采收品质的影响. 乌鲁木齐:新疆农业大学, 2015.
[11] 王彦. 哈密垦区机采棉品种筛选及种植模式研究. 石河子:石河子大学, 2016.
[12] 邓福军, 林海, 宿俊吉, 等. 棉花种植密度与产量形成的关系. 新疆农业科学, 2011,48(12):2191-2196.
[13] 曹娟, 范君华, 刘明, 等. 南疆海岛棉和陆地棉棉铃发育过程中的生理生化特征. 棉花学报, 2010,22(5):460-465.
[14] 李健伟, 肖绍伟, 夏冬, 等. 机采种植模式对不同株型棉花生长及产量的影响. 新疆农业大学学报, 2017,40(6):391-396.
[15] 罗振, 李维江, 董合忠, 等. 密度与整枝对抗虫杂交棉产量分布的影响. 山东农业科学, 2009(12):43-47.
[16] 张丽娟, 夏绍南, 崔爱花, 等. 几种棉花脱叶催熟剂在鄱阳湖棉区的应用效果初探. 江西农业学报, 2013,25(5):16-18.
[17] 赵国良, 文秀金, 刘春莲, 等. 机采棉脱叶剂对比试验. 中国棉花, 2006,33(2):36-37.
[18] 李健伟, 石洪亮, 李春艳, 等. 喷施脱叶剂对不同机采种植模式下棉花脱叶效果及纤维品质的影响. 新疆农业大学学报, 2017(2):4-9.
[19] 冯伟, 刘胜波, 郭天财, 等. 行距对大穗型小麦兰考矮早八同化物质生产及产量的影响. 麦类作物学报, 2009,29(4):668-672.
[20] 王聪. 棉花机采模式下行距变化对植株生长发育和产量形成的影响. 石河子:石河子大学, 2015.
[21] 尔晨, 林涛, 张昊, 等. 行距对机采棉干物质积累及氮磷利用效率的影响. 棉花学报, 2020,32(1):77-90.
[22] 杨培, 陈振, 张伟涛, 等. 对等密度条件下机采棉不同种植模式的综合评价. 新疆农业科学, 2019,56(4):599-609.
[23] 崔岳宁, 高振江, 杨宝玲. 不同行距种植模式下机采棉品质比较分析. 中国农机化学报, 2016(7):235-240.
[24] 周永萍, 张海娜, 师树新, 等. 合理密植下不同株行距配置对棉花生长发育和产量品质的影响. 华北农学报, 2018,33(1):158-163.
[1] Wang Hongbo, Tang Maosong, Li Guohui, GaoYang , Wang Xingpeng. Construction and Evaluation of Cotton Yield Model Based on Logistic Model for Filmless Drip Irrigation in Southern Xinjiang [J]. Crops, 2024, 40(1): 97-103.
[2] Li Xinghe, Wang Haitao, Liu Cunjing, Tang Liyuan, Zhang Sujun, Cai Xiao, Zhang Xiangyun, Zhang Jianhong. QTL Mapping for Fiber Quality Traits Using Gossypium barbadense Chromosome Segment Introgression Lines [J]. Crops, 2023, 39(5): 1-9.
[3] Wu Xueqin, Liu Kaiyu, Han Chunhua, Alimujiang·Kelaimu , Cui Yannan, Li Jiangyu, Ma Chunmei, Zhong Wenfan, Zhao Qiang. Effects of 14% Thiobenzene-Dioxalon on Defoliation Ripening, Yield and Quality of Cotton [J]. Crops, 2023, 39(5): 164-169.
[4] Wang Yandan, Gao Xin, Peng Jinjian, Tang Feiyu. Comparison of Carbohydrate and Nitrogen Contents in Vegetative Organs between Early- and Middle-Maturing Cotton Lines and the Relationships to Dry Matter Accumulation [J]. Crops, 2023, 39(2): 106-114.
[5] Yi Xiang, Lü Xin, Zhang Lifu, Tian Min, Zhang Ze, Fan Xianglong. Unmanned Aerial Vehicle Hyperspectral Estimation of Nitrogen Content in Cotton Leaves Based on RF and SPA [J]. Crops, 2023, 39(2): 245-252.
[6] Tang Zhongjie, Xie Deyi, Xu Shouming, Nie Lihong, Lü Shuping, Wang Mingkun. Changes of Insect Resistance and Its Correlation Analysis with Yield Traits in Transgenic Bt Cotton from 2005 to 2020 [J]. Crops, 2023, 39(2): 77-82.
[7] Li Wenshan, Zhang Junyao, Tang Jianghua, Xu Wenxiu, Xu Qinghua. Effects of Different Doses of AFD on Growth and Yield of Cotton [J]. Crops, 2023, 39(1): 158-162.
[8] Ma Chunmei, Tian Yangqing, Zhao Qiang, Li Jiangyu, Wu Xueqin. Effects of Plant Growth Regulator Compound on Cotton Yield [J]. Crops, 2022, 38(6): 181-185.
[9] Feng Changhui, Jiao Chunhai, Zhang Youchang, Bie Shu, Qin Hongde, Wang Qiongshan, Zhang Jiaohai, Wang Xiaogang, Xia Songbo, Lan Jiayang, Chen Quanqiu. Genetic Analysis for Yield and Fiber Quality Traits in Upland Cotton Based on Partial NCII Mating Design [J]. Crops, 2022, 38(5): 13-21.
[10] Xu Min, Jin Lulu, Li Ruichun, Sun Liyuan, Wang Zisheng. Study on Cotton Chemical Topping in Liaohe Cotton Area [J]. Crops, 2022, 38(5): 201-207.
[11] Zhao Kang, Yang Tao, Wang Honggang, Li Shengmei, Pang Bo, Ma Shangjie, Gao Wenwei. Evaluation on Salt Tolerance of 42 Sea-Island Cotton (Gossypium barbadense) Varieties in Xinjiang during Germination Period [J]. Crops, 2022, 38(5): 27-33.
[12] Zhang Te, Li Guangwei, Li Kexin, Li Xinxin, Zhao Qiang. Effects of DPC through Drip Irrigation on Growth and Yield of Cotton [J]. Crops, 2022, 38(4): 124-131.
[13] Sun Zhengran, Wu Hao, Zhang Cuiping, Zhang Jinli, He Daohua. Developing and Screening of Chemical Regulator for Cotton Topping [J]. Crops, 2021, 37(1): 112-117.
[14] Zhou Jiang, Xie Yizhang, Xiang Ping'an. Emergy Analysis of Inputs and Outputs of Major Field Crop Ecosystems in Hunan Province [J]. Crops, 2021, 37(1): 175-181.
[15] Qin Hongde, Rong Yihua, Huang Xiaoli, Hu Aibing, Zhou Jiahua, Yan Xianhui, Li Wei, Zhang Xianhong, Li Hongju, Yang Guozheng. Responses of Cotton to Planting Densities and Nitrogen Rates under Direct Seeding in Summer with Simplified Fertilization [J]. Crops, 2020, 36(4): 127-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!