Crops ›› 2022, Vol. 38 ›› Issue (5): 13-21.doi: 10.16035/j.issn.1001-7283.2022.05.002

Previous Articles     Next Articles

Genetic Analysis for Yield and Fiber Quality Traits in Upland Cotton Based on Partial NCII Mating Design

Feng Changhui1(), Jiao Chunhai2, Zhang Youchang1, Bie Shu1, Qin Hongde1, Wang Qiongshan1, Zhang Jiaohai1, Wang Xiaogang1, Xia Songbo1, Lan Jiayang1, Chen Quanqiu1()   

  1. 1Institute of Cash Crops, Hubei Academy of Agricultural Sciences/Key Laboratory of Cotton Biology and Breeding in the Middle Reaches of the Changjiang River, Ministry of Agriculture and Rural Affairs, Wuhan 430064, Hubei, China
    2Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
  • Received:2021-05-06 Revised:2021-09-29 Online:2022-10-15 Published:2022-10-19

Abstract:

The total of 60 upland cotton varieties (lines) and 180 F1 derived from partial NCII (North Carolina II) mating design were used to analyze the genetic effect and genetic correlation of yield and fiber quality traits. The variance components of additive effect of lint yield, lint percent, boll number and boll weight were 0.25, 0.62, 0.20 and 0.14, respectively, and the dominant effect variance components were 0.17, 0.13, 0.07 and 0.21, respectively; the variance components of additive effect of fiber upper half mean length, fiber strength and Micronaire were 0.48, 0.60 and 0.48, respectively, and the dominant effect variance components were 0.05, 0.02 and 0.06, respectively. The dominance × environment interaction effect of these traits (except Micronaire) were higher than additive × environment interaction effect. Among the yield traits, lint percent had strong correlation with mean length in upper half of the fiber, fiber strength and Micronaire, and the correlation coefficients were -0.35, -0.40 and 0.48, respectively. Yield traits except boll weight in upland cotton presented a common genetic characteristic that additive effect was the main genetic effect. The additive effect was mainly responsible for the inheritance of mean length in upper half of fiber, fiber strength and Micronaire. Partial NCII mating design can be used to evaluate a large number of parents at the same time.

Key words: Upland cotton, Yield, Fiber quality, Genetic effect, Partial NCII mating design

Table 1

The name and origin of parents"

父本Male parent 母本Female parent
编号Code 名称Name 来源Origin 编号Code 名称Name 来源Origin
1 ZD2040 中国湖北 31 陆/涩 中国湖北
2 新抗1 中国湖北 32 M0518● 中国湖北
3 X1808 美国 33 苏棉12号● 中国江苏
4 D5F● 中国湖北 34 JA532 中国新疆
5 鲁棉研28 中国山东 35 鄂荆92 中国湖北
6 鄂棉9号 中国湖北 36 SJB006-2 中国湖北
7 德州早熟 中国山东 37 陆/异 中国湖北
8 宜棉3号 中国湖北 38 D5M● 中国湖北
9 美G-82 美国 39 冀丰197 中国河北
10 KB02父本● 中国湖北 40 苏优6108 中国江苏
11 中棉所45 中国河南 41 TM-1 美国
12 中棉所12 中国河南 42 新陆中20 中国新疆
13 新陆早15 中国新疆 43 奥棉618 中国北京
14 U37-8 中国湖北 44 1027母本● 中国湖北
15 美棉1 美国 45 JA542 中国湖北
16 DYM1 中国湖北 46 S6043 中国湖北
17 鄂抗棉13 中国湖北 47 鲁棉1号 中国山东
18 鲁棉3号 中国山东 48 8933 中国湖北
19 中棉所36 中国河南 49 SD2 非洲
20 A1735 中国江苏 50 E48M● 中国湖北
21 美棉2 美国 51 新陆中33 中国新疆
22 荆317● 中国湖北 52 MBC31776 中国河南
23 苏研65017 中国江苏 53 洞庭1号 中国湖南
24 新陆中10号 中国新疆 54 M110989 中国河南
25 SJB226 中国江苏 55 古巴棉 古巴
26 泗阳493 中国江苏 56 荆3372● 中国湖北
27 SD1 非洲 57 鲁棉研29 中国山东
28 F0518● 中国湖北 58 JA501 中国湖北
29 华惠15 中国湖北 59 岱字棉15 美国
30 泗抗1号● 中国江苏 60 鲁棉398 中国山东

Table 2

Mating patterns in partial NCII mating design"

母本
Female parent
父本Male parent
1 2 3 ... 28 29 30
31 ×
32 × ×
33 × × ×
34 × × ×
35 × × ×
36 × × ×
37 × ×
38 ×
×
× ×
60 × × ×
31 × × ×
32 × × ×
33 × × ×
34 × ×
35 ×

Table 3

Descriptive statistic characteristics of the yield and fiber quality traits in the partial NCII mating design population"

性状
Trait
最小值
Minimum
最大值
Maximum
平均值
Mean
标准误
Standard error
标准差
Standard variance
偏度
Kurtosis
标准误
Standard error
峰度
Skewness
标准误
Standard error
皮棉产量Lint yield (kg/hm2) 164.21 3051.49 1625.61 0.82 37.71 0.07 0.05 0.52 0.11
铃数Boll number (×104/hm2) 18.66 118.78 78.47 0.28 12.86 -0.11 0.05 0.57 0.11
铃重Boll weight (g) 2.94 7.58 5.21 0.01 0.58 0.36 0.05 0.46 0.11
衣分Lint percent (%) 24.48 48.72 39.54 0.08 3.60 -0.57 0.05 0.27 0.11
上半部平均长度
Mean length of upper half (mm)
24.00 33.60 28.37 0.03 1.40 0.22 0.05 -0.13 0.11
断裂比强度Strength (cN/tex) 23.10 38.70 30.65 0.05 2.41 0.30 0.05 0.38 0.11
马克隆值Micronaire 3.50 6.60 5.20 0.01 0.49 -0.13 0.05 -0.34 0.11

Table 4

Variance analysis on the breeding target traits in the partial NCII mating design population"

变异来源
Source of variation
自由度
df
皮棉产量
Lint yield
(kg/hm2)
铃数
Boll number
(×104/hm2)
铃重
Boll
weight (g)
衣分
Lint
percent (%)
上半部平均长度
Mean length of
upper half (mm)
断裂比强度
Strength
(cN/tex)
马克隆
Micronaire
基因型Genotype 239 12.63** 7.02** 10.10** 52.30** 26.48** 54.28** 20.93**
环境Environment 2 543.44** 3.20* 1924.51** 3647.36** 2816.13** 1373.88** 2304.86**
基因型×环境Genotype×environment 468 2.42** 2.14** 2.59** 2.97** 3.91** 6.71** 2.64**
区组Block 2 2.44 0.29 1.16 7.64** 9.97** 6.37** 11.05**
误差Error 1416

Table 5

Estimated proportions of variance components for the breeding target traits"

方差分量比例
Proportions of variance components
皮棉产量
Lint yield
铃数
Boll number
铃重
Boll weight
衣分
Lint percent
上半部平均长度
Mean length of upper half
断裂比强度
Strength
马克隆值
Micronaire
VA/VP 0.25** 0.20** 0.14** 0.62** 0.48** 0.60** 0.48**
VD/VP 0.17** 0.07* 0.21** 0.13** 0.05** 0.02 0.06**
VAE/VP 0.05** 0.08** 0.05** 0.03** 0.05** 0.03** 0.08**
VDE/VP 0.15** 0.14** 0.17** 0.07** 0.18** 0.22** 0.08**
Ve/VP 0.38** 0.51** 0.43** 0.15* 0.24** 0.13* 0.30**

Table 6

Estimated additive effects of yield and its components for parents"

亲本
Parents
皮棉产量
Lint yield
(kg/hm2)
铃数
Boll number
(×104/hm2)
铃重
Boll weight
(g)
衣分
Lint percent
(%)
亲本
Parents
皮棉产量
Lint yield
(g/hm2)
铃数
Boll number
(×104/hm2)
铃重
Boll weight
(g)
衣分
Lint percent
(%)
1 -9.53 -0.22 -0.23 -0.20 31 3.83 0.90 -0.13 2.29
2 -12.22 -3.44 -0.10 -0.62 32● -1.41 -0.02 0.03 -0.49
3 -1.06 -4.16 0.21 0.14 33●○ 11.64 1.54 -0.03 2.58
4● 8.58 3.91 -0.04 0.67 34 -14.99 -7.37 0.11 -1.04
5 4.03 -2.75 0.08 2.00 35 -17.05 -7.35 0.15 -2.24
6 -7.51 3.32 -0.18 -2.14 36 -6.01 -3.98 0.08 0.00
7 3.43 2.74 -0.13 0.74 37 7.97 3.74 -0.03 0.31
8○ 19.85 3.89 0.14 1.62 38●○ 13.62 3.18 -0.03 2.24
9 -16.40 -4.66 0.14 -3.10 39 7.61 4.35 0.00 -0.19
10● -6.90 -0.49 -0.12 -0.68 40 4.28 3.92 -0.07 -0.02
11 -4.04 1.92 -0.10 -1.21 41 0.73 1.43 0.16 -1.96
12 2.93 2.87 -0.09 0.07 42 -3.48 -2.44 0.01 0.47
13 -13.35 -2.27 -0.26 -0.13 43 0.97 -0.02 0.09 -0.48
14 4.00 2.21 -0.03 0.17 44● 6.96 1.78 -0.08 1.90
15 4.47 -0.23 0.02 1.23 45 5.71 0.59 -0.03 1.70
16 -1.24 1.74 0.01 -1.72 46 4.14 -0.24 0.12 0.32
17 5.85 0.89 0.07 0.65 47 -7.11 -0.43 -0.11 -0.67
18 -8.53 0.41 0.06 -2.61 48 -0.55 -2.91 0.09 0.76
19 -23.56 -6.24 -0.13 -2.38 49 -25.59 -8.21 0.06 -3.65
20 6.23 -0.29 0.16 0.48 50● 4.94 0.09 0.06 0.84
21 -13.08 -3.60 -0.01 -1.97 51 -2.92 -1.00 -0.01 0.10
22● 2.33 -1.71 0.04 1.25 52 -5.27 -2.15 0.08 -0.84
23○ 15.33 4.45 -0.01 1.64 53 -5.71 -0.55 -0.10 -0.24
24 -14.15 -2.37 -0.11 -1.66 54 -1.20 1.86 0.03 -1.35
25 -8.14 3.51 -0.19 -2.28 55 1.77 -0.52 0.11 0.01
26 -0.24 -2.22 0.01 0.84 56●○ 9.02 0.30 0.14 1.18
27 -37.19 -14.18 -0.17 -2.70 57 8.05 6.42 -0.12 0.29
28● 6.78 0.20 -0.01 1.72 58○ 23.65 2.28 0.28 2.73
29○ 20.91 7.58 -0.05 1.64 59○ 11.11 2.34 0.08 1.21
30●○ 15.18 5.44 -0.04 1.40 60○ 22.53 6.27 0.12 1.37

Table 7

Estimated additive effects of fiber quality traits for parents"

亲本
Parents
上半部平均长度
Mean length of upper half (mm)
断裂比强度
Strength (cN/tex)
马克隆值
Micronaire
亲本
Parents
上半部平均长度
Mean length of upper half (mm)
断裂比强度
Strength (cN/tex)
马克隆值
Micronaire
1 0.27 0.91 -0.22 31 -1.19 -2.14 0.18
2 -0.03 -0.28 -0.10 32 -0.43 -0.58 0.10
3 -0.13 0.37 -0.04 33 -0.82 -1.89 0.17
4 0.01 -0.05 -0.05 34 1.42 3.93 -0.39
5 -0.60 -1.60 0.09 35 0.29 0.89 -0.08
6 0.81 2.01 -0.47 36 0.97 2.01 -0.18
7 0.27 -0.08 0.01 37 -0.03 0.69 -0.07
8 -0.33 -0.64 0.07 38 -0.14 -0.14 0.07
9 0.46 0.25 -0.30 39 -0.27 -0.29 0.19
10 0.62 -0.06 -0.03 40 -0.37 -0.60 -0.06
11 0.44 0.60 0.00 41 -0.33 -0.54 0.19
12 -0.27 -0.87 0.09 42 -0.17 -0.47 -0.01
13 0.00 0.40 0.08 43 -0.26 -1.38 0.11
14 0.41 0.13 -0.04 44 -0.01 0.09 0.10
15 0.61 0.87 0.14 45 0.03 -0.81 0.06
16 -0.03 -0.15 -0.19 46 0.81 0.97 -0.24
17 0.13 0.00 -0.20 47 -0.73 -1.66 0.19
18 0.28 -0.37 -0.18 48 -0.46 -0.35 0.05
19 -0.04 0.19 -0.32 49 0.99 3.32 -0.12
20 -0.07 -0.81 0.02 50 0.14 -0.19 -0.04
21 0.37 0.60 -0.12 51 0.00 0.72 0.22
22 -0.14 -0.70 -0.10 52 1.28 2.06 -0.12
23 -0.39 0.54 0.29 53 -0.69 -0.50 0.08
24 0.14 1.30 -0.30 54 -0.40 -0.81 0.27
25 0.02 0.23 -0.01 55 -0.32 -0.37 0.16
26 -0.36 0.01 -0.20 56 0.23 0.19 0.08
27 0.25 1.10 0.15 57 0.22 0.13 0.17
28 -0.48 -1.33 0.36 58 -0.59 -1.43 0.23
29 -0.51 -1.25 -0.13 59 -0.12 -0.76 0.17
30 0.25 0.25 0.03 60 -0.97 -1.67 0.22

Table 8

Estimated genotypic correlation coefficient (r) among the breeding target traits"

性状
Trait
皮棉产量
Lint yield
铃数
Boll number
铃重
Boll weight
衣分
Lint percent
上半部平均长度
Mean length of upper half
断裂比强度
Strength
马克隆值Micronaire 0.40** 0.26** 0.18** 0.48** -0.46** -0.45**
断裂比强度Strength -0.30** -0.26** 0.06** -0.40** 0.81**
上半部平均长度Mean length of upper half -0.21** -0.18* 0.11** -0.35**
衣分Lint percent 0.73** 0.45** 0.22**
铃重Boll weight 0.49** 0.10*
铃数Boll number 0.83**
[1] 代攀虹, 孙君灵, 何守朴, 等. 陆地棉核心种质表型性状遗传多样性分析及综合评价. 中国农业科学, 2016, 49(19):3694-3708.
[2] Li B, Shi Y, Gong J, et al. Genetic effects and heterosis of yield and yield component traits based on Gossypium barbadense chromosome segment substitution lines in two Gossypium hirsutum backgrounds. PLoS ONE, 2016, 11(6):e0157978.
doi: 10.1371/journal.pone.0157978
[3] Jenkins J N, Wu J, Mccarty J C, et al. Genetic effects of thirteen Gossypium barbadense L. chromosome substitution lines in topcrosses with upland cotton cultivars: I. yield and yield components. Crop Science, 2006, 46(3):1169-1178.
doi: 10.2135/cropsci2005.08-0269
[4] Jenkins J N, Mccarty J C, Wu J, et al. Genetic variance components and genetic effects among eleven diverse upland cotton lines and their F2 hybrids. Euphytica, 2009, 167(3):397-408.
doi: 10.1007/s10681-009-9902-y
[5] 杨六六, 刘惠民, 曹美莲, 等. 棉花产量和纤维品质性状的遗传研究. 棉花学报, 2009, 21(3):179-183.
[6] 宋美珍, 喻树迅, 范术丽, 等. 短季棉主要农艺性状的遗传分析. 棉花学报, 2005, 17(2):94-98.
[7] 刘芦苇, 祝水金. 转基因抗虫棉产量性状的遗传效应及其杂种优势分析. 棉花学报, 2007, 19(1):33-37.
[8] 裴小雨, 周晓箭, 马雄风, 等. 持续高温干旱年份陆地棉农艺和产量性状的遗传效应分析. 棉花学报, 2015, 27(2):126-134.
[9] 刘艳改, 马雄风, 周晓箭, 等. 陆地棉主要农艺与纤维品质性状的双列杂交分析. 棉花学报, 2014, 26(1):25-33.
[10] 王学德, 潘家驹. 陆地棉杂种优势及自交衰退的遗传分析. 作物学报, 1991, 17(1):18-23.
[11] 韩祥铭, 刘英欣. 陆地棉产量性状的遗传分析. 作物学报, 2002, 28(4):533-536.
[12] 李成奇, 郭旺珍, 张天真. 衣分不同陆地棉品种的产量及产量构成因素的遗传分析. 作物学报, 2009, 35(11):1990-1999.
[13] Campbell B T, Chee P W, Lubbers E, et al. Dissecting genotype×environment interactions and trait correlations present in the Pee Dee cotton germplasm collection following seventy years of plant breeding. Crop Science, 2012, 52(2):690-699.
doi: 10.2135/cropsci2011.07.0380
[14] Song M, Fan S, Pang C, et al. Genetic analysis of fiber quality traits in short season cotton (Gossypium hirsutum L.). Euphytica, 2015, 202(1):97-108.
doi: 10.1007/s10681-014-1226-x
[15] Zeng L H, Meredith W R. Associations among lint yield,yield components,and fiber properties in an introgressed population of cotton. Crop Science, 2009, 49(5):1647-1654.
doi: 10.2135/cropsci2008.09.0547
[16] Miranda J B, Vencovsky R. The partial circulant diallel cross at the interpopulation level. Genetics and Molecular Biology, 1999, 22(2):249-255.
doi: 10.1590/S1415-47571999000200020
[17] Kempthorne O, Curnow R N. The partial diallel cross. Biometrics, 1961, 17(2):229-250.
doi: 10.2307/2527989
[18] Wen J, Zhao X, Wu G, et al. Genetic dissection of heterosis using epistatic association mapping in a partial NCII mating design. Scientific Reports, 2015, 5:18376.
doi: 10.1038/srep18376 pmid: 26679476
[19] Reis A J S, Chaves L J, Duarte J B, et al. Prediction of hybrid means from a partial circulant diallel table using the ordinary least square and the mixed model methods. Genetics and Molecular Biology, 2005, 28(2):314-320.
doi: 10.1590/S1415-47572005000200023
[20] Vivas M, Silveira S F, Viana A P, et al. Efficiency of circulant diallels via mixed models in the selection of papaya genotypes resistant to foliar fungal diseases. Genetics and Molecular Research, 2014, 13(3):4797-4804.
doi: 10.4238/2014.July.2.9 pmid: 25062415
[21] 朱军. 广义遗传模型与数量遗传分析新方法. 浙江农业大学学报, 1994, 20(6):551- 559.
[22] Rao C R. Estimation of variance and covariance componentsMINQUE theory. Journal of Multivariate Analysis, 1971, 1(3):257-275.
doi: 10.1016/0047-259X(71)90001-7
[23] 朱军. 作物杂种后代基因型值和杂种优势的预测方法. 生物数学学报, 1993, 8(1):32-44.
[24] Miller R G. The jackknife-a review. Biometrika, 1974, 61(1):1-15.
[25] 许华兵, 邹勇, 朱桢明, 等. 鄂杂棉10号的选育. 中国棉花, 2005, 32(9):18-19.
[26] 秦洁华. 棉花新品种新创12号高产高效栽培技术. 现代农业, 2016(2):38-39.
[27] 钱大顺, 张香桂, 许乃银, 等. 中熟抗病杂交棉新品种——苏杂26. 江苏农业学报, 2001, 17(3):179.
[28] 张天真, 唐灿明, 朱协飞, 等. 转基因抗虫杂交棉南抗3号的选育及应用. 中国棉花, 2001, 28(10):25-26.
[29] Gordon G H. A method of parental selection and cross prediction using incomplete partial diallels. Theoretical and Applied of Genetics, 1980, 56(5):225-232.
doi: 10.1007/BF00295453
[30] Zhao Y S, Li Z, Liu G Z, et al. Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding. Proceedings of the National Academy of Sciences of the United States, 2015, 112(51):15624-15629.
[31] 李俊文, 刘爱英, 石玉真, 等. 转基因抗虫陆地棉与优质品系杂交铃重尧衣分的遗传及其F1杂种优势分析. 棉花学报, 2010, 22(2):163-168.
[32] Wu J, Mccarty J C, Jenkins J N, et al. Breeding potential of introgressions into upland cotton: genetic effects and heterosis. Plant Breeding, 2010, 129(5):526-532.
[33] 任全兴, 刘艮舟, 翟虎渠. 不同样本容量下几种交配设计估计遗传参数的可靠性. 作物学报, 1993, 19(6):531-538.
[34] Campbell B T, Weaver D B, Sharpe R, et al. Breeding potential of elite Pee Dee germplasm in upland cotton breeding programs. Crop Science, 2013, 53(3):894-905.
doi: 10.2135/cropsci2012.09.0549
[35] Wang L, He S, Dia S, et al. Alien genomic introgressions enhanced fiber strength in upland cotton (Gossypium hirsutum L.). Industrial Crops and Products, 2021, 159:113028.
doi: 10.1016/j.indcrop.2020.113028
[1] Zhou Hao, Qiu Xianjin, Xu Jianlong. Advance in Effects of Magnetized Water Irrigation on Crop Growth and Development [J]. Crops, 2022, 38(6): 1-6.
[2] Wen Rui, Chen Qianwu, Zhao Yajie, Jia Yiming, Lu Xudong, Zhang Jihong, Li Huanchun, Zhao Peiyi, Zhang Yonghu. Study on Water Temperature Effects and Water Use Efficiency of Paddy Field under Different Plastic Film Mulching Planting Patterns in Arid Area of Loess Plateau in Northwest China [J]. Crops, 2022, 38(6): 111-117.
[3] Xiong Yousheng, Xiong Hanfeng, Guo Yanlong, Wang Haisheng, Liu Wei, Yan Yuxiang, Xie Yuanyuan, Zhou Jianxiong, Yang Lijun. Effects of Reducing Fertilizer Application Models on Wheat Yield and Nutrient Use Efficiencies in Rice-Wheat Cropping System [J]. Crops, 2022, 38(6): 118-123.
[4] Yang Yan, Xu Ningsheng, Pan Zhechao, Li Yanshan, Yang Qiongfen, Zhang Lei. Effects of Paclobutrazol and Nitrogen on Yield and Economic Benefit of Potato [J]. Crops, 2022, 38(6): 139-144.
[5] Qin Meng, Cui Shize, He Xiaodong, Zhai Lingxia, Tao Bo, Wang Zhaojun, Zhao Haicheng, Li Hongyu, Zheng Guiping, Liu Lihua. Effects of Straw Puffing Returning on Rice Yield, Quality and Soil Nutrients [J]. Crops, 2022, 38(6): 159-166.
[6] Ma Chunmei, Tian Yangqing, Zhao Qiang, Li Jiangyu, Wu Xueqin. Effects of Plant Growth Regulator Compound on Cotton Yield [J]. Crops, 2022, 38(6): 181-185.
[7] Qiao Jiangfang, Zhang Panpan, Shao Yunhui, Liu Jingbao, Li Chuan, Zhang Meiwei, Huang Lu. Effects of Different Planting Densities and Varieties on Dry Matter Production and Yield Components of Summer Maize [J]. Crops, 2022, 38(6): 186-192.
[8] Hui Chao, Yang Weijun, Deng Tianchi, Chen Yuxin, Song Shilong, Zhang Jinshan, Shi Shubing. Effects of Biochar Dosage on Accumulation and Transport of Dry Matter and Nitrogen and Yield of Spring Wheat in Irrigated Area [J]. Crops, 2022, 38(6): 201-207.
[9] Wang Heshou. Effects of Different Nitrogen Application Rates on Nutritional Quality of Vegetable Sweet Potato [J]. Crops, 2022, 38(6): 208-213.
[10] Feng Yu, Xing Baolong. Research on the Growth Characteristics and Forage Quality of Different Cowpea Varieties in Cold Region [J]. Crops, 2022, 38(6): 220-225.
[11] Shi Guanyan, Wang Juanfei, Ma Huifang, Zhao Xiongwei. Correlation and Regression Analysis between Yield and Main Agronomic Traits in Foxtail Millet Hybrids [J]. Crops, 2022, 38(6): 82-87.
[12] Zhao Bin, Ji Changhao, Sun Hao, Zhu Bin, Wang Rui, Chen Xiaodong. Comprehensive Assessment of the Yield and Quality of Forage and Grain among Multi-Rowed Barley Lines [J]. Crops, 2022, 38(6): 93-97.
[13] Xu Chuangye, Zhang Jianjun, Zhou Gang, Zhang Kaipeng, Zhu Xiaohui, Wang Jiaxi, Dang Yi, Zhao Gang, Wang Lei, Li Shangzhong, Fan Tinglu. Screening and Evaluation of New Maize Varieties with Compact Planting, High Yield and Suitable for Mechanical Grain Harvest in Loess Plateau in Eastern Gansu Province [J]. Crops, 2022, 38(5): 104-110.
[14] Chang Haigang, Li Guang, Yuan Jianyu, Xie Mingjun, Qi Xiaoping. Effects of Different Fertilization Methods on Soil Nutrients and Yield of Spring Wheat in the Loess Hilly Region of Central Gansu Province [J]. Crops, 2022, 38(5): 160-166.
[15] Zhang Xi, Xie Jin, Huang Hao, Gao Renji, Lu Chao, Zhou Yilin, Liang Zengfa, Wang Wei. Effects of Nitrogen Fertilizer Operation and Plant Spacing on Yield and Quality of Yunyan 116 in Pu’er Tobacco Area [J]. Crops, 2022, 38(5): 188-194.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[2] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[3] Yuan Wang,Ze Guo,Xiaohui Li,Shixiao Xu,Xuexia Xing,Siqi Zhang,Jia He,Chao Liu,Fang Chen,Tiezhao Yang. Effects of Meloidogyne incognita Infection on Tobacco Root System under Different Temperatures[J]. Crops, 2018, 34(4): 161 -166 .
[4] Jingwen Fang,Yan Wu,Zhihua Liu. Effects of Salt Stress on Seed Germination and Physiological Characteristics of Apocynum venetum[J]. Crops, 2018, 34(4): 167 -174 .
[5] Chengxun Li,Aiping Li,Xiaoyu Xu,Kaibin Zheng. Discussion on the Mechanism of Stress Resistance of Pigeonpea and Application Prospect in Fujian Province[J]. Crops, 2018, 34(4): 28 -31 .
[6] Xingchuan Zhang, Wenxuan Huang, Kuanyu Zhu, Zhiqin Wang, Jianchang Yang. Effects of Nitrogen Rates on the Nitrogen Use Efficiency and Agronomic Traits of Different Rice Cultivars[J]. Crops, 2018, 34(4): 69 -78 .
[7] Mingcong Zhang,Yingce Zhan,Songyu He,Xijun Jin,Mengxue Wang,Chunyuan Ren,Yuxian Zhang. Effects of Different Nitrogen Fertilizer and Density Level on Dry Matter Accumulation and Yield of Adzuki Bean[J]. Crops, 2018, 34(1): 141 -146 .
[8] Chunlei Wang,Zhijun Fang,Yanrui Xu,Xiaoping Lu,Chunhua Mu,Kai Shan,Lujiang Hao. Effects of Starane on the Community Diversity of Maize Root Endophytes Analyzed Using High-Throughput Sequencing Technology[J]. Crops, 2018, 34(1): 160 -165 .
[9] Yanfang Hao,Liangqun Wang,Yong Liu,Wei Zhang,Wei Yang,Hongyan Bai,Bo Wu. Establishment of Sorghum Cell Suspensions with Young Leaves[J]. Crops, 2018, 34(1): 35 -40 .
[10] Wei Zhang,Liangqun Wang,Yong Liu,Yanfang Hao,Wei Yang,Hongyan Bai,Bo Wu. Optimization of the Factors Related to the Efficiency of Agrobacterium-Mediated Transformation of Sorghum[J]. Crops, 2018, 34(1): 56 -61 .