Crops ›› 2021, Vol. 37 ›› Issue (4): 196-201.doi: 10.16035/j.issn.1001-7283.2021.04.030

Previous Articles     Next Articles

Evaluation of Germplasms for Resistance to Potato Late Blight and Molecular Markers Assisted Screening

Lou Shubao1(), Li Fengyun1, Tian Guokui1, Wang Haiyan1, Tian Zhendong2, Wang Lichun1, Liu Xicai1, Wang Hui1   

  1. 1Keshan Branch of Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Potato Biology and Genetics, Ministry of Agriculture and Rural Affairs, Qiqihar 161005, Heilongjiang, China
    2Huazhong Agricultural University/Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
  • Received:2020-10-27 Revised:2020-12-03 Online:2021-08-15 Published:2021-08-13

Abstract:

Potato late blight caused by Photophthora infestans has always been a devastating disease in potato production. Use of resistant varieties is the most fundamental and effective way to control the disease. Molecular marker assisted selection can greatly shorten the breeding period, significantly improve the breeding efficiency. A total of 60 offspring of hybrid combinations of 395008.45×Kexin No.27 were evaluated for resistance to Phytophthora infestans. The results showed that 39 materials were resistantance varieties and 21 materials were susceptible varieties. The molecular marker related to the resistance gene R8 were used to detect 60 offspring and 36 potato germplasm resources, and 43 varieties (lines) and 28 varieties (lines) had resistance gene R8, respectively. The potato resistance germplasm resources tested could provide high-quality parental materials for disease resistance breeding.

Key words: Potato, Late blight, Molecular markers

Fig.1

Appraisal criteria for resistance of potato leaves in vitro against late blight"

Table 1

Identification of resistance to late blight in potato germplasm resources and offspring of hybrid combinations"

编号
Number
品种(系)
Cultivar (line)
田间抗性
Field resistance
室内接种抗性
Resistance indoor
抗性是否一致
Unified resistance
R8基因
R8 gene
1 395008.45 中感(MS) 高感(HS)
2 克新27号 高抗(HR) 抗病(R)
3 S1 高抗(HR) 抗病(R)
4 S2 高抗(HR) 高抗(HR)
5 S3 中抗(MR) 感病(S)
6 S4 高抗(HR) 抗病(R)
7 S5 中抗(MR) 中抗(MR)
8 S6 高抗(HR) 高抗(HR)
9 S7 高感(HS) 高感(HS)
0 S8 高抗(HR) 抗病(R)
11 S9 高感(HS) 高感(HS)
12 S10 高抗(HR) 高抗(HR)
13 S11 中抗(MR) 中抗(MR)
14 S12 中抗(MR) 中抗(MR)
15 S13 中抗(MR) 中抗(MR)
16 S14 中抗(MR) 中抗(MR)
17 S15 高抗(HR) 抗病(R)
18 S16 高感(HS) 高感(HS)
19 S17 高抗(HR) 抗病(R)
20 S18 中感(MS) 感病(S)
21 S19 高抗(HR) 高抗(HR)
22 S20 高抗(HR) 抗病(R)
23 S21 高感(HS) 高感(HS)
24 S22 高抗(HR) 抗病(R)
25 S23 高抗(HR) 高抗(HR)
26 S24 高抗(HR) 高抗(HR)
27 S25 中抗(MR) 感病(S)
28 S26 高抗(HR) 抗病(R)
29 S27 高抗(HR) 抗病(R)
30 S28 中感(MS) 感病(S)
31 S29 高感(HS) 高感(HS)
32 S30 高抗(HR) 抗病(R)
33 S31 高抗(HR) 高抗(HR)
34 S32 高感(HS) 高感(HS)
35 S33 高抗(HR) 抗病(R)
36 S34 高抗(HR) 抗病(R)
37 S35 高抗(HR) 高抗(HR)
38 S36 中抗(MR) 中抗(MR)
39 S37 高抗(HR) 抗病(R)
40 S38 中感(MS) 感病(S)
41 S39 高抗(HR) 抗病(R)
42 S40 高感(HS) 感病(S)
43 S41 中感(MS) 感病(S)
44 S42 中抗(MR) 中抗(MR)
45 S43 中感(MS) 感病(S)
46 S44 中抗(MR) 中抗(MR)
47 S45 中抗(MR) 中抗(MR)
48 S46 中感(MS) 感病(S)
49 S47 高感(HS) 高感(HS)
50 S48 中感(MS) 感病(S)
51 S49 中感(MS) 感病(S)
52 S50 高感(HS) 高感(HS)
53 S51 中抗(MR) 中抗(MR)
编号
Number
品种(系)
Cultivar (line)
田间抗性
Field resistance
室内接种抗性
Resistance indoor
抗性是否一致
Unified resistance
R8基因
R8 gene
54 S52 中抗(MR) 中抗(MR)
55 S53 高感(HS) 高感(HS)
56 S54 中抗(MR) 中抗(MR)
57 S55 中抗(MR) 中抗(MR)
58 S56 高感(HS) 高感(HS)
59 S57 中感(MS) 感病(S)
60 S58 中抗(MR) 中抗(MR)
61 S59 中抗(MR) 中抗(MR)
62 S60 中感(MS) 高感(HS)
63 Atzima 中抗(MR) 中抗(MR)
64 维道克 中抗(MR) 中抗(MR)
65 NS51-5 高抗(HR) 抗病(R)
66 兹列巴 高抗(HR) 抗病(R)
67 扎列娃 高抗(HR) 抗病(R)
68 S.etuberosum 高抗(HR) 高抗(HR)
69 S.stenotomum 高抗(HR) 高抗(HR)
70 bhp244 中抗(MR) 中抗(MR)
71 云薯101 高抗(HR) 抗病(R)
72 云薯301 高抗(HR) 抗病(R)
73 云薯201 高抗(HR) 抗病(R)
74 云薯501 中抗(MR) 中抗(MR)
75 云薯102 高抗(HR) 抗病(R)
76 388676.1 高抗(HR) 抗病(R)
77 396033.102 中抗(MR) 中抗(MR)
78 395037.107 中抗(MR) 中抗(MR)
79 390663.8 中抗(MR) 中抗(MR)
80 393617.1 高抗(HR) 抗病(R)
81 395109.29 中抗(MR) 中抗(MR)
82 393077.54 高抗(HR) 抗病(R)
83 延薯3号 中抗(MR) 感病(S)
84 黑金刚 高抗(HR) 抗病(R)
85 黑美人 高抗(HR) 抗病(R)
86 转心乌 高抗(HR) 抗病(R)
87 陇薯6号 中抗(MR) 中抗(MR)
88 坝90-2-6 中抗(MR) 感病(S)
89 会-2 中抗(MR) 感病(S)
90 内薯7号 中抗(MR) 中抗(MR)
91 克新13号 中抗(MR) 中抗(MR)
92 克新18号 高抗(HR) 抗病(R)
93 克新19号 中感(MS) 高感(HS)
94 克新20号 高抗(HR) 中抗(MR)
95 克新30号 中抗(MR) 感病(S)
96 2015124-1 中抗(MR) 感病(S)
97 Reina 中抗(MR) 感病(S)
98 荷兰材料 中抗(MR) 感病(S)

Fig.2

Detection of resistance gene R8 in potato hybrids of 395008.45×Kexin No.27 M: DL2000 DNA marker, the same below"

Fig.3

Detection of resistance gene R8 in potato germplasm resistance resources"

[1] 金黎平, 屈冬玉, 谢开云, 等. 我国马铃薯种质资源和育种技术研究进展. 种子, 2003(5):98-100.
[2] Vossen J H, van Arkel G, Bergervoet M, et al. The Solanum demissum R8 late blight resistance gene is an Sw-5 homologue that has been deployed worldwide in late blight resistant varieties. Theoretical and Applied Genetics, 2016,129(9):1785-1796.
[3] Witek K, Jupe F, Witek A I, et al. Accelerated cloning of a potato late blight-resistance gene using Ren Seq and SMRT sequencing. Nature Biotechnology, 2016,34(6):656-660.
[4] Hein I, Birch P R, Danan S, et al. Progress in mapping and cloning qualitative and quantitative resistance against Phytophthora infestans in potato and its wild relatives. Potato Research, 2009,52(3):215-227.
[5] Rietman H, Bijsterbosch G, Cano L M, et al. Qualitative and quantitative late blight resistance in the potato cultivar Sarpo Mira is determined by the perception of five distinct RXLR effectors. Molecular Plant-Microbe Interactions, 2012,25(7):910-919.
[6] Poland J A, Balint-Kurti P J, Wisser R J, et al. Shades of gray: the world of quantitative disease resistance. Trends in Plant Science, 2009,14(1):21-29.
[7] Li Z K, Luo L J, Mei H W, et al. A “defeated” rice resistance gene acts as a QTL against a virulent strain of Xanthomonas oryzae pv. oryzae. Molecular and General Genetics, 1999,261(1):58-63.
[8] Solomon-Blackburn R M, Stewart H E, Bradshaw J E. Distinguishing major-gene from field resistance to late blight (Phytophthora infestans) of potato (Solanum tuberosum) and selecting for high levels of field resistance. Theoretical and Applied Genetics, 2007,115(1):141-149.
[9] Lindqvist-Kreuze H, Gastelo M, Perez W, et al. Phenotypic stability and genome-wide association study of late blight resistance in potato genotypes adapted to the tropical highlands. Phytopathology, 2014,104(6):624-633.
[10] 蒋锐. 马铃薯晚疫病广谱抗性QTL_dPI09c的精细定位及抗性基因克隆. 武汉:华中农业大学, 2017.
[11] 李文娟, Forbes Gregory A, 谢开云. 马铃薯晚疫病发病程度田间观察记录标准的探讨. 中国马铃薯, 2012,26(4):238-246.
[12] 刘龙超, 周云, 贺苗苗, 等. 四倍体马铃薯SSR遗传图谱的构建及晚疫病抗性QTL初步定位. 植物病理学报, 2016,46(1):84-90.
[13] 王金萍, 刘永伟, 孙果忠, 等. 抗茎腐病分子标记在159份玉米自交系中的验证及实用性评价. 植物遗传资源学报, 2017,18(4):754-762.
[14] 向小姣, 张建, 郑天清, 等. 应用分子标记技术改良京作1号的稻瘟病抗性. 植物遗传资源学报, 2016,17(4):773-780.
[15] Zhu S, Li Y, Vossen J H, et al. Functional stacking of three resistance genes against Phytophthora infestans in potato. Transgenic Research, 2012,21(1):89-99.
[16] 刘勋, 郑克邪, 张娇, 等. 马铃薯晚疫病抗性基因分子标记检测及抗性评价. 植物遗传资源学报, 2019,20(3):538-549.
[1] Yang Ping, Chen Yuli, Gong Fajiang, Bi Haibin, Gao Minghui. Bulking Characteristics of Potato Tubers and Its Correlation with Tuber Fresh Weight [J]. Crops, 2021, 37(2): 130-134.
[2] Qiu Tian, Niu Lili, Zhu Jiang, Cai Fuge, Wang Qingwei. Effects of Three Growth Regulators on the Growth of Potato Test-Tube Seedlings [J]. Crops, 2021, 37(2): 160-164.
[3] Duan Huimin, Lu Xiao, Zhou Xiaojie, Li Gaofeng, Wen Guohong, Wang Yuping, Cheng Lixiang, Zhang Feng. Effects of Potato Leaf Type and Planting Density on Yield Components [J]. Crops, 2021, 37(1): 160-167.
[4] Yang Yunma, Yang Junfang, Jia Liangliang, Xing Suli, Fan Jianying, Feng Zhiming, Zhang Shuqing, Xiang Congchao, Huang Shaohui, Liu Xuetong. Nutrient Absorption and Suitable Quantity of Spring Potato in Hebei Double Cropping Cultivated Region [J]. Crops, 2020, 36(6): 170-174.
[5] Miao Pinggui, Yu Xianfeng, Zhang Xucheng, Fang Yanjie, Hou Huizhi, Wang Hongli, Ma Yifan, Dou Xuecheng. Effects of Vertical Deep Rotary Tillage on Soil Greenhouse Gas Emissions from Potato Farmland [J]. Crops, 2020, 36(3): 109-116.
[6] He Wanchun, Huang Kai, Ling Peng, Chen Zixiong, Wang Jingcai, Pan Xiaochun, Zhang Juanning, Li Pengcheng. Effects of Different Ratio of Organic Fertilizer Nitrogen to Fertilizer Nitrogen on the Absorption Capacity and Morphology of Potato Roots [J]. Crops, 2020, 36(3): 132-136.
[7] Chen Juan, He Jinhong, Liu Jili, Kang Jianhong, Wu Na. Effect of Different Planting Patterns on Starch Formation and Yield of Potato in Semi-Arid Area [J]. Crops, 2020, 36(3): 169-176.
[8] Hao Kai, Jia Liguo, Qin Yonglin, Fan Mingshou. Research Progress about Nitrogen Effects on Potato Source-Sink Relationship [J]. Crops, 2020, 36(3): 22-26.
[9] Qiu Cailing, Fan Guoquan, Shen Yu, Gao Yanling, Zhang Wei, Han Shuxin, Zhang Shu, Dong Xuezhi, Ma Ji, Bai Yanju. Establishment of RT-qPCR Detection System for Potato Spindle Tuber Viroid [J]. Crops, 2020, 36(3): 79-84.
[10] Wang Tianwen,Li Changzhong,Chen Guanghai. Effects of Sowing Dates and Densities on Propagation, Growth and Yield of Potato Seeds [J]. Crops, 2020, 36(2): 162-167.
[11] Guo Qilin,Wu Haiyun,Li Huan,Liu Qing. Ecological Stoichiometric Characteristics of Carbon, Nitrogen and Phosphorus in Leaves and Stems of Different Types of Sweet Potato [J]. Crops, 2020, 36(2): 41-47.
[12] Hou Qian,Wang Wanxing,Li Guangcun,Xiong Xingyao. Advances in the Research on Potato Continuous Cropping Obstacles [J]. Crops, 2019, 35(6): 1-7.
[13] Chen Yang,Qin Yonglin,Yu Jing,Jia Liguo,Fan Mingshou. Basis and Measures for Reducing Nitrogen Fertilizer on Irrigated Potato in Inner Mongolia [J]. Crops, 2019, 35(6): 90-93.
[14] Guo Jinting,Teng Yue,Gao Yuliang,Zhang Yan,Li Kuihua. Effects of Different Light Quality on Characteristics of Sessile-Tuberization and Photosynthetic Performance with Single Node Stems in Potato [J]. Crops, 2019, 35(6): 120-126.
[15] Zhang Congying,Jiang Jizhi,Liang Jiao,Qiao Liu,Huang Jie. Identification of Bacterium HT-6 and Its Antagonistic Stability against Phytophthora infestans [J]. Crops, 2019, 35(6): 162-167.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!