Crops ›› 2021, Vol. 37 ›› Issue (6): 193-198.doi: 10.16035/j.issn.1001-7283.2021.06.031

Previous Articles     Next Articles

Analysis of Bacterial Community and Influencing Factors in Tobacco Soil at Different Altitudes in Zunyi

Li Maosen1(), Gao Weikai1,2, Ren Tianbao1, Jiang Shixiang3, He Xiaoya3, Luo Leqin3, Yun Fei1(), Ke Xiaoting2()   

  1. 1 Tobacco college of Henan Agricultural University/Henan Engineering Research Center for Biochar/Henan Engineering Laboratory of Biochar Technology, Zhengzhou 450002, Henan, China
    2 China Tobacco Guangdong Industrial Co., Ltd., Guangzhou 510032, Guangdong, China
    3Guizhou Provincial Tobacco Company Zunyi Branch, Zunyi 563000, Guizhou, China
  • Received:2021-05-18 Revised:2021-08-14 Online:2021-12-15 Published:2021-12-16
  • Contact: Yun Fei,Ke Xiaoting E-mail:18134433972@163.com;yunfeifei55@126.com;kytown85@163.com

Abstract:

In order to explore the characteristics and the main influencing factors of bacterial community structure of tobacco planting soil at different altitudes, three tobacco planting soils at different altitudes of 800 (ZL), 1000 (ZS) and 1200m (ZH) were selected in Zunyi, Guizhou, and the bacterial community of tobacco planting soil was analyzed by 16S rRNA high-throughput sequencing. The results showed that bacteria in tobacco planting soil in ZL and ZH treatments α-diversity were lower than that of ZS treatment. The dominant bacteria phyla in tobacco growing soil at three altitudes were Actinobacteria, Proteobacteria, Chloroflexi and Acidobacteria. The relative abundance of Actinobacteria was the highest in ZL (34.22%), which was higher than that in ZH; on the contrary, the abundance of Proteobacteria in ZH was significantly higher than that in ZL. The abundance of Chloroflexi and Acidobacteria were consistent at the three altitudes, which were ZS > ZL > ZH. The results of cluster heat map analysis showed that soil water content and pH value had a significant positive correlation with Armimonadota and Cyanobacteria, and a significant negative correlation with Proteobacteria; Proteobacteria, Firmicutes and Patescibacteria were significantly correlated with microbial biomass N, but negatively correlated with the content of available K.

Key words: Tobacco-planting soil, Altitude, Bacterial community, Environmental factors

Table 1

Physicochemical indexes of tobacco planting soil at different sample sites"

取样地
Sampling site
海拔
Altitude (m)
地理坐标
Geographical coordinates
pH 容重
Soil bulk density
(g/cm3)
温度
Temperature
(℃)
含水率
Water content
(%)
江北咀Jiangbeizui 819.0 106°42′51′′ E,27°27′17′′ N 5.01±0.081c 1.02±0.010b 29.73±0.12c 12.55±1.21c
新华村Xinhua 1022.3 106°36′47′′ E,27°36′49′′ N 7.40±0.087a 1.13±0.049a 31.20±0.62b 19.73±1.70a
新土村Xintu 1220.0 106°38′13′′ E,E27°41′3′′ N 6.23±0.017b 1.18±0.038a 32.67±0.80a 15.51±0.59b
取样地
Sampling site
有机碳
Soil organic
carbon (g/kg)
碱解氮
Alkaline N (mg/kg)
有效磷
Available P
(mg/kg)
速效钾
Available K
(mg/kg)
微生物量碳
Microbial biomass
carbon (mg/kg)
微生物量氮
Microbial biomass
N (mg/kg)
江北咀Jiangbeizui 23.1±0.1b 155.02±6.42a 56.99±9.69a 115.45±0.00c 351.70±33.42b 32.91±4.79a
新华村Xinhua 24.0±0.1a 67.52±7.15b 38.40±4.22b 228.26±2.33b 474.24±10.35a 22.75±2.43b
新土村Xintu 20.1±0.1c 154.37±1.31a 64.81±6.35a 381.79±18.66a 186.60±11.90c 15.52±0.58c

Fig.1

OTUs number of soil bacterial community at different altitudes"

Table 2

Effects of altitude on α diversity of soil bacterial community"

处理Treatment Simpson指数Simpson index Shannon指数Shannon index Chao指数Chao index 覆盖度Coverage
ZH 0.0039±0.00091a 6.38±0.34b 2699.25±634.72b 0.98±0.00370a
ZS 0.0029±0.00053b 6.71±0.11a 3276.21±131.29a 0.98±0.00062a
ZL 0.0036±0.00042ab 6.56±0.11ab 3117.52±200.52ab 0.98±0.00230a

Fig.2

Relative abundance of bacterial community on phylum level"

Fig.3

Comparison of relative abundance of bacterial communities on phylum level between ZL and ZH treatment"

Fig.4

Principal component analysis of soil bacterial community structure"

Fig.5

Correlation between bacterial dominant phylum and environmental factors MBN: microbial biomass N; SOC: soil organic carbon; MBC: microbial biomass carbon; AN: alkaline N; AP: available P; SWC: soil water content; SBD: soil bulk density; T: temperature; AK: available K. “*”indicates P < 0.05, “**”indicates P < 0.01, “***”indicates P < 0.001"

[1] 王彦亭, 谢剑平, 李志宏, 等. 中国烟草种植区划. 北京: 科学出版社, 2010.
[2] 中国农业科学院烟草研究所. 中国烟草栽培学. 上海: 上海科学技术出版社, 2005.
[3] 曹学鸿, 申国明, 王永, 等. 恩施烟区海拔与烟叶化学成分的关系研究. 中国烟草科学, 2011, 32(S1):21-24.
[4] 张春, 周冀衡, 杨荣生, 等. 云南曲靖不同海拔烟区土壤和烟叶硼含量的分布状况及相关性. 中国烟草学报, 2010(6):48-53.
[5] 潘孝晨, 唐海明, 肖小平, 等. 不同土壤耕作方式下稻田土壤微生物多样性研究进展. 中国农学通报, 2019, 35(23):51-57.
[6] 梁勇, 冯书华, 李博, 等. 元阳梯田核心区稻田土壤养分含量与微生物数量的时空变异特征. 云南农业大学学报(自然科学), 2019, 34(3):532-537.
[7] 周焱, 徐宪根, 阮宏华, 等. 武夷山不同海拔高度土壤有机碳矿化速率的比较. 生态学杂志, 2008(11):1901-1907.
[8] Rousk J, Baath E, Brookes P C, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal:Multidisciplinary Journal of Microbial Ecology, 2010, 4(10):1340-1351.
[9] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科学出版社, 1999
[10] Brookes P, Powlson D S, Jenkinson D S. Measurement of microbial biomass phosphorus in soil. Soil Biology and Biochemistry, 1982, 14(4):319-329.
doi: 10.1016/0038-0717(82)90001-3
[11] 冯慧琳, 徐辰生, 何欢辉, 等. 生物炭对土壤酶活和细菌群落的影响及其作用机制. 环境科学, 2021, 42(1):422-432.
[12] 胡国松, 郑伟, 王震东, 等. 烤烟营养原理. 北京: 科学出版社, 2000.
[13] 李强, 张芸萍, 解燕, 等. 曲靖植烟土壤pH分布特征及其影响因素研究. 核农学报, 2020, 34(4):887-895.
[14] 邓小华, 蔡兴, 张明发, 等. 喀斯特地区湘西州植烟土壤pH分布特征及其影响因素. 水土保持学报, 2016, 30(6):308-313.
[15] 陈光宇. 山间不同海拔高度对烟地微环境和烤烟生长发育的影响. 成都:西南大学, 2016.
[16] 尚斌, 邹焱, 徐宜民, 等. 贵州中部山区植烟土壤有机质含量与海拔和成土母质之间的关系. 土壤, 2014, 46(3):446-451.
[17] 刘琼峰, 李明德, 吴海勇, 等. 张家界烟区不同海拔高度植烟土壤特征与综合评价. 中国农学通报, 2013, 29(11):132-138.
[18] 焦敬华, 刘春奎, 许自成, 等. 湖北宣恩不同海拔植烟土壤养分含量状况分析与综合评价. 安徽农业科学, 2007(28):8936-8937,8949.
[19] 朱三荣, 李大鹏, 田峰, 等. 龙山县不同海拔高度植烟土壤肥力特征研究. 湖南农业科学, 2009(11):52-53,56.
[20] 王晓彤, 靳振江, 周军波, 等. 龙脊稻作梯田土壤细菌群落结构和功能类群及影响因子分析. 农业资源与环境学报, 2021, 38(3):365-375.
[21] 高静, Muhanmmad S, 岳琳艳, 等. 藏北高原草甸土壤固碳微生物群落特征随海拔和季节的变化. 生态学报, 2018, 38(11):3816-3824.
[22] 魏孝荣, 邵明安, 高建伦. 黄土高原沟壑区小流域土壤有机碳与环境因素的关系. 环境科学, 2008, 29(10):2879-2884.
[23] Lynn T M, Ge T, Yuan H, et al. Soil carbon-fixation rates and associated bacterial diversity and abundance in three natural ecosystems. Microbial Ecology, 2017, 73(3):645-657.
doi: 10.1007/s00248-016-0890-x pmid: 27838764
[24] Shen C C, Xiong J B, Zhang H Y, et al. Soil pH drives the spatial distribution of bacterial communities along altitude on Changbai Mountain. Soil Biology and Biochemistry, 2013, 57(2):204-211.
doi: 10.1016/j.soilbio.2012.07.013
[25] Singh Takahashi Kim M, et al. A hump-backed trend inbacterial diversity with altitude on Mount Fuji,Japan. Microbial Ecology, 2012, 63(2):429-437.
doi: 10.1007/s00248-011-9900-1
[26] Zhang Y G, Cong J, Lu H, et al. Soil bacterial diversity patterns and drivers along an altitudeal gradient on Shennongjia Mountain,China. Microbial Biotechnology, 2015, 8(4):739-746.
doi: 10.1111/mbt2.2015.8.issue-4
[27] 张杰, 余潮, 王自海, 等. 不同植被群落表层土壤中细菌群落多样性. 环境科学研究, 2013, 26(8):866-872.
[28] Wang H H, Ren T B, Müller K, et al. Soil type regulates carbon and nitrogen stoichiometry and mineralization following biochar or nitrogen addition. Science of the Total Environment, 2021, 753:141645.
doi: 10.1016/j.scitotenv.2020.141645
[1] Zheng Di, Wen Chunyan, Shen Xianhua, Hu Biaolin, Che Jüqin, Xiong Yunhua, Wang Zhiquan, Wu Yanshou. Analysis on Variation in Rice Yield Components and Quality at Different Altitudes in Tibet [J]. Crops, 2020, 36(5): 199-203.
[2] Shumin Liang,Ying Wang,Zhechao Pan,Lei Zhang,Ningsheng Xu,Yanshan Li,Qiongfen Yang,Xianping Li,Jianming ai,Chunguang Yao,Lili Lu,Qijun Sui. Effects of Soil Moisture and Temperature with Different Cultivation Methods on the Yield and Tuberization of Potato [J]. Crops, 2018, 34(3): 90-96.
[3] Hongda Ye, ,Bencai Sha,Wenxiang Wang,Jia Liu,Yiran Ye,Meirong Hai. Effects of Altitude on Photosynthetic and Fluorescence Characteristics, and Antioxidant Properties on Solanum tuberosum L. [J]. Crops, 2017, 33(5): 93-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!