Crops ›› 2022, Vol. 38 ›› Issue (6): 14-22.doi: 10.16035/j.issn.1001-7283.2022.06.003

Previous Articles     Next Articles

Research Progress and Development Prospect of Adaptive Cultivation of Quinoa in Beijing

Mei Li()   

  1. Beijing Agricultural Technology Extension Station, Beijing 100029, China
  • Received:2021-08-06 Revised:2021-10-21 Online:2022-12-15 Published:2022-12-21

Abstract:

Quinoa is a new health food with comprehensive nutrition, with bright flower color and high drought and cold tolerance, the viewing period of which can continue more than 40 days after color conversion. Quinoa was introduced into Beijing in 2015, a lot of work had been done in suitable planting areas and suitable variety screening, nutritional quality detection, stress resistance and stable yield cultivation technology exploration, dish development, technology demonstration, etc. The study on adaptive cultivation of quinoa showed that quinoa could ripen normally in the region with altitude ≥300m, annual mean temperature ≤12.5°C, annual mean accumulated temperature ≤4802.0°C·d and annual mean light intensity ≥2268.7lx in Beijing. Four varieties (“Longli No.1”, “Longli No.3”, “Hongli No.1” and “Hongli No.2”) performed well. Quinoa rice had rich protein content, the protein content of “Hongli No.1” and “Hongli No.2” reached 19.6%-20.0%. The integrated cultivation techniques of resistance and stable yield of quinoa integrated around the three key links of cultivation, agricultural machinery and plant protection were applied in the suburb of Beijing for 453.33ha, and the application rate reached 100%. Compared with the crop of corn, quinoa increased income by 37 700 yuan/ha. However, the unbalanced regional development, low production efficiency, low degree of mechanization, and lack of policy-based agricultural insurance restrict the sustainable and healthy development of quinoa in Beijing. In the future, increasing policy and financial support, improving the mechanized production level of quinoa, and establishing and improving relevant standard systems should be made to expand and strengthen Beijing’s quinoa industry and make quinoa’s “small production” in “big market” to find “micro demand” and sell at a good price.

Key words: Quinoa, Variety, Adaptability, Cultivation techniques, Nutritional quality, Benefit

Table 1

Natural conditions of quinoa adaptive cultivation area in Beijing suburb"


District
乡镇
Village (town)
海拔
Altitude
(m)
年均气温
Mean annual
temperature
(℃)
年均积温
Mean annual
accumulated
temperature (℃·d)
年均光照强度
Mean annual light
intensity (lx)
年均降水量
Mean annual
precipitation
(mm)
延庆Yanqing
永宁、四海、珍珠泉、延庆、香
营、刘斌堡、旧县、陈营、康庄
478~728
8.9~9.3
3886.0~3971.1
2593.4~2678.0
420~441
门头沟Mentougou 斋堂、雁翅、潭柘寺、清水 252~441 10.2~12.5 4216.2~4802.0 2268.7~2476.0 450~568
房山Fangshan 大安山、史家营 770~954 12.1~12.2 4750.0~4792.0 2430.0~2471.0 539~544
昌平Changping 延寿、小汤山、南邵 58~334 11.5~12.6 4687.3~4840.0 2486.5~2618.2 478~507
怀柔Huairou 琉璃庙 341 12.0 4690.6 2487.1 623
密云Miyun 东邵渠、溪翁庄、新城子 105~374 11.0~11.4 4210.0~4529.0 2435.8~2489.0 575~628
海淀Haidian 上庄 58 12.6 4792.0 2483.0 505
大兴Daxing 庞各庄 34 12.5 4820.0 2507.0 519
顺义Shunyi 南法信 32 12.4 4786.0 2482.0 576

Table 2

Performance of quinoa in various adaptive cultivation areas in Beijing suburb"


District
乡镇
Village (town)
种植面积
Planting area
(hm2)
品种(系)
Variety (line)
产量
Yield
(kg/hm2)
种植表现
Planting
performance
延庆Yanqing
永宁、四海、珍珠泉、延庆、香
营、刘斌堡、旧县、陈营、康庄
377.40
山西华青藜麦、山西汇天华藜麦、
陇藜1号、陇藜3号、红藜1号等
1132.5~2109.0
良好
门头沟Mentougou
斋堂、雁翅、潭柘寺、清水
33.73
山西华青藜麦、陇藜1号、陇藜3
号、红藜1号等
1072.5~1534.5
良好
房山Fangshan 大安山、史家营 24.73 山西华青藜麦 1117.5~1944.0 良好
昌平Changping 延寿、小汤山、南邵 14.54 陇藜1号、陇藜3号、红藜1号等 1654.5~2214.0 良好
怀柔Huairou 琉璃庙 0.33 陇藜1号、陇藜3号 1119.0 倒伏、病害
密云Miyun 东邵渠、溪翁庄、新城子 1.13 山西华青藜麦 502.5 倒伏、病害
海淀Haidian 上庄 0.07 山西华青藜麦 倒伏、病害
大兴Daxing 庞各庄 1.33 山西汇天华藜麦 202.5 倒伏、病害
顺义Shunyi 南法信 0.07 陇藜2号、陇藜3号 454.5 倒伏、病害
合计Total / 453.33 / / /

Table 3

Source and characteristics of varieties"

品种Variety 来源Source 突出特点Prominent feature
陇藜1号Longli No.1 甘肃省农业科学院 早熟、中粒型品种,生育期89~101d,千粒重2.2~3.1g,穗红色,籽粒白色,观赏期约15d。
陇藜3号Longli No.3 甘肃省农业科学院 早熟、中粒型品种,生育期87~93d,千粒重2.1~2.9g,穗黄色,籽粒黄色,观赏期约15d。
红藜1号Hongli No.1
北京市农业技术推广站
晚熟、小粒型品种,生育期140~149d,千粒重0.7~1.0g,抗倒伏/折,耐高温,穗玫红色,籽粒红色,观赏期长达40d左右。
红藜2号Hongli No.2
北京市农业技术推广站
晚熟、小粒型品种,生育期140~149d,千粒重0.9~1.1g,抗倒伏/折,耐高温,穗橘黄色,籽粒红色,观赏期长达40d左右。

Table 4

Growth characteristics of varieties in different regions"

区域
Region
品种
Variety
生育期
Growth
period (d)
株高
Plant height
(cm)
茎粗
Stem diameter
(mm)
分枝数
Branch
number
主穗长
Main panicle
length (cm)
主穗宽
Main ear
width (cm)
单株粒重
Grain weight
per plant (g)
千粒重
1000-grain
weight (g)
山区
Mountain area
陇藜1号 98±2.8 181.1±17.2 22.1±1.0 14.4±5.2 44.2±14.7 15.5±3.6 46.2±20.6 2.3±0.2
陇藜3号 90±3.0 143.9±21.8 11.0±0.1 12.7±3.3 39.6±10.1 14.8±5.3 38.0±1.3 2.2±0.1
红藜1号 147±2.0 221.7±16.7 26.2±0.2 6.6±0.9 45.8±4.3 8.2±1.3 47.0±4.9 0.9±0.0
红藜2号 147±2.2 219.9±15.7 25.3±0.4 13.2±4.7 60.5±9.8 9.8±2.6 34.8±4.1 0.8±0.0
浅山区
Shallow mountainous area
陇藜1号 99±7.3 163.1±11.3 14.1±3.1 24.1±3.3 32.5±4.9 11.8±1.5 23.3±6.5 2.6±0.5
陇藜3号 90±3.2 92.8±13.2 9.7±1.4 17.7±9.2 26.1±6.0 10.8±1.1 25.9±6.6 2.9±0.1
红藜1号 141±1.9 284.4±29.4 21.2±0.5 14.0±6.0 43.8±14.0 11.9±1.6 61.5±14.8 1.0±0.0
红藜2号 141±1.6 291.6±27.0 16.1±0.2 13.6±2.6 45.2±16.5 9.0±1.6 56.3±12.1 1.1±0.1

Table 5

Nutritional quality performance of different varieties at different altitudes g/100g"

地点
Site
海拔
Altitude (m)
品种
Variety
蛋白质
Protein
淀粉
Starch
脂肪
Fat
粗纤维
Crude fiber
K Mg Ca 16种氨基酸总量
Total 16 amino acids
延庆下虎叫村
Xiahujiao village of Yanqing District
635 陇藜1号 14.0 49.1 6.3 4.5 1070 288 111 9.2
陇藜3号 15.9 46.5 5.9 4.3 1210 278 123 9.7
延庆上垙村
Shangguang village of Yanqing District
587 陇藜1号 15.0 46.1 6.1 3.9 1030 284 94 10.2
陇藜3号 17.2 47.5 5.7 3.4 874 284 128 11.5
红藜1号 19.6 42.8 6.8 4.6 711 264 117 11.9
红藜2号 19.5 42.9 6.9 4.6 718 269 119 11.8
延庆西白庙村
Xibaimiao village of Yanqing District
478 陇藜1号 16.6 44.1 6.0 5.0 1640 380 223 11.5
红藜1号 20.0 42.9 8.0 4.4 907 353 114 14.0
红藜2号 19.8 42.7 7.9 4.2 901 351 112 13.9
昌平分水岭村
Fenshuiling village of Changping District
334 陇藜1号 13.3 47.3 6.9 4.6 1510 294 131 8.7
陇藜3号 17.3 41.8 7.0 4.0 1820 457 115 12.0
红藜1号 19.6 42.4 7.8 5.8 1630 330 131 13.3
红藜2号 19.6 41.9 8.0 5.9 1610 323 129 13.2
平均Mean / / 17.5 44.5 6.9 4.6 1202 320 127 11.6

Table 6

Fertility effect on the growth of Shanxi Huaqing quinoa"

调查日期(月-日)
Investigation date
(month-day)
株高Plant height (cm) 茎粗Stem diameter (mm) 分枝数Branch number
高肥地块
High-fertile plot
低肥地块
Low-fertile plot
高肥地块
High-fertile plot
低肥地块
Low-fertile plot
高肥地块
High-fertile plot
低肥地块
Low-fertile plot
06-23 129.3±5.2 52.9±1.1 19.6±1.0 13.0±0.4 25.1±1.0 16.2±0.0
07-15 182.1±5.5 132.5±4.0 20.6±0.4 19.9±0.3 27.2±2.0 24.3±2.0
07-30 190.9±1.5 157.8±3.5 24.0±0.4 22.1±0.9 27.1±0.0 24.1±1.2

Table 7

The effects of fertility on yield and its components of quinoa"

处理
Treatment
实际密度(株/hm2
Actual seedling number (plant/hm2)
单株粒重
Grain weight per plant (g)
千粒重
1000-grain weight (g)
产量
Yield (kg/hm2)
高肥地块High-fertile plot 57 180±675 31.36±0.20 2.63±0.10 1793.0±33.0
低肥地块Low-fertile plot 45 780±360 27.94±0.30 2.49±0.10 1279.5±25.5

Table 8

Effects of previous herbicides on the growth of “Longli No.1”"

调查日期(月-日)
Investigation date
(month-day)
株高Plant height (cm) 茎粗Stem diameter (mm) 分枝数Branch number
未打除草剂
No herbicide
打除草剂
Herbicide
未打除草剂
No herbicide
打除草剂
Herbicide
未打除草剂
No herbicide
打除草剂
Herbicide
06-29 35.0±1.0 18.2±1.0 14.3±0.1 12.0±0.1 21.3±0.0 17.2±2.0
07-18 142.1±2.0 93.1±2.0 16.5±0.4 13.5±0.3 23.4±2.0 19.1±2.0
09-11 196.4±1.4 176.2±1.0 36.4±0.2 24.3±0.2 23.1±1.0 19.2±2.0

Table 9

Effects of previous herbicides on yield and its components of quinoa"

处理
Treatment
出苗数(株/hm2
Emergence number
(plant/hm2)
实际密度(株/hm2
Actual seedling number
(plant/hm2)
单株粒重
Grain weight per
plant (g)
千粒重
1000-grain
weight (g)
产量
Yield
(kg/hm2)
未打除草剂No herbicide 154 005±2430 68 370±1560 19.60±0.50 1.57±0.10 1340.1±65.9
打除草剂Herbicide 82 005±735 55 020±795 18.67±0.30 1.26±0.10 1027.4±33.6

Table 10

Effects of different sowing treatments on emergence of quinoa"

处理
Treatment
始苗期(播后天数)
First seedling date (days after sowing)
终苗期(播后天数)
Last seedling date (days after sowing)
出苗率
Emergence rate (%)
整齐度
Uniformity
A1 5.0±0.5 16.0±0.5 41.8±0.4 2.5±0.1
A2 6.0±0.5 10.0±0.5 66.6±0.6 5.6±0.3
A3 6.0±0.3 12.0±0.2 57.5±0.6 3.6±0.2
A4 9.0±0.3 16.0±0.2 38.6±0.3 2.8±0.1
B2 8.0±0.5 12.0±0.5 36.3±0.8 2.9±0.1
B4 12.0±0.5 15.0±0.3 8.0±0.2 1.7±0.1

Table 11

Cost and benefit of quinoa compared with corn in the same area ×104 yuan/hm2"

产量
Yield (t/hm2)
产值
Output value
成本
Cost
效益
Benefit
对照区效益
Benefit of control area
较对照增加经济效益
Increase economic benefits compared with the control
1.86 5.21 1.02 4.19 0.42 3.77
[1] 任贵兴, 杨修仕, 么杨. 中国藜麦产业现状. 作物杂志, 2015(5):1-5.
[2] Heitkam T, Weber B, Walter I, et al. Satellite DNA landscapes after allotetraploidization of quinoa (Chenopodium quinoa) reveal unique A and B subgenomes. The Plant Journal, 2020, 103(1):32-52.
doi: 10.1111/tpj.14705 pmid: 31981259
[3] Hariadi Y, Marandon K, Tian Y, et al. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. Journal of Experimental Botany, 2011, 62:185-193.
doi: 10.1093/jxb/erq257 pmid: 20732880
[4] 墨菲K, 马坦吉翰J. 藜麦研究进展和可持续生产//任贵兴,赵钢,等译. 北京: 科学出版社, 2018.
[5] Oshodi A A, Ogungbenle H N, Oladimeji M O. Chemical composition,nutritionally valuable minerals and functional properties of benniseed (Sesamun radiatum),pearl millet (Pennisetum typhoides) and quinoa (Chenopodium quinoa) flours. International Journal of Food Sciences and Nutrition, 1999, 50(5):325-331.
pmid: 10719563
[6] Stefano C, Antonella B, Lucia B, et al. The content of proteic and nonproteic (free and protein-bound) tryptophan in quinoa and cereal flours. Food Chemistry, 2007, 100(4):1350-1355.
doi: 10.1016/j.foodchem.2005.10.072
[7] 李娜娜, 丁汉凤, 郝俊杰, 等. 藜麦在中国的适宜性种植及发展展望. 作物杂志, 2016(1):12-15.
[8] 王晨静, 赵习武, 陆国权, 等. 藜麦特性及开发利用研究进展. 浙江农林大学学报, 2014, 31(2):296-301.
[9] Spehar C R, Santos R L D. Agronomic performance of quinoa selected in the Brazilian Savannah. Pesquisa Agropecuária Brasileira, 2005, 40(6):609-612.
doi: 10.1590/S0100-204X2005000600012
[10] Atul B, Deepak O. Origin of genetic variability and improvement of quinoa (Chenopodium quinoa Willd.). Gene Pool Diversity and Crop Improvement, 2016, 10:241-270.
[11] Dini I, Donors G C, Dini A. Nutritional and antinutritional compositon of Kancolla seeds:an interesting and underexploited andine food plant. Food Chemistry, 2005, 92(1):125-132.
doi: 10.1016/j.foodchem.2004.07.008
[12] Thanapornpoonpong S N, Vearasilp S, Pawelzik E, et al. Influence of various nitrogen applications on protein and amino acid profiles of amaranth and quinoa. Journal of Agricultural and Food Chemistry, 2008, 56(23):11464-11470.
doi: 10.1021/jf802673x pmid: 19006392
[13] 王斌, 赵圆峰, 聂督, 等. 旱作藜麦养分吸收规律及养分限制因子研究. 中国土壤与肥料, 2020(4):172-177.
[14] 田计均, 唐媛, 董雨, 等. 水分胁迫对不同发育时期藜麦生理的影响. 生物学杂志, 2020, 37(6):73-76.
[15] Jacobsen S E, Mujica A, Jensen C R. The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Reviews International, 2003, 19:99-109.
doi: 10.1081/FRI-120018872
[16] 沈菊, 杨起楠, 成明锁. 高原藜麦幼苗期抗寒性分析. 现代农业科技, 2020(19):9-11.
[17] Sanju C, Devilal B, Biswajit P, et al. Quinoa:a potential crop for nutritional security. Just Agriculture, 2020, 1(2):93-100.
[18] 贡布扎西, 旺姆. 南美藜生物学特性及栽培技术. 西藏科技, 1995, 70(4):19-22.
[19] 梅丽, 郭自军, 王立臣, 等. 15份藜麦资源在北京地区的生态适应性评价. 中国农业大学学报, 2019, 24(9):27-36.
[20] Vega-Gálvez A, Miranda M, Vergara J, et al. Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.),an ancient Andean grain:a review. Journal of the Science of Food and Agriculture, 2010, 90:2541-2547.
doi: 10.1002/jsfa.4158 pmid: 20814881
[21] 延莎, 邢洁雯, 王晓闻. 不同菌种发酵对藜麦蛋白质特性及脂质构成的影响. 中国农业科学, 2020, 53(10):2045-2054.
[22] 胡一波, 杨修仕, 陆平, 等. 中国北部藜麦品质性状的多样性和相关性分析. 作物学报, 2017, 43(3):464-470.
[23] 石振兴, 杨修仕, 么杨, 等. 60份国内外藜麦材料子粒的品质性状分析. 植物遗传资源学报, 2017, 18(1):88-93.
[24] 周海涛, 刘浩, 么杨, 等. 藜麦在张家口地区试种的表现与评价. 植物遗传资源学报, 2014, 15(1):222-227.
[25] 时俊帅, 谷瑞, 陈双林, 等. 不同海拔的高节竹笋蛋白质营养品质差异分析. 江西农业大学学报, 2019, 41(2):308-315.
[26] 杨科, 刘文瑜, 王旺田, 等. 连作对藜麦生长和生理特性的影响. 江西农业大学学报, 2021, 43(2):244-252.
[27] 梅丽, 石春梅, 周吉红, 等. 北京浅山区藜麦不同播期避灾丰产及景观效应试验. 中国农学通报, 2019, 35(36):26-32.
[28] 任永峰, 黄琴, 王志敏, 等. 不同化控剂对藜麦农艺性状及产量的影响. 中国农业大学学报, 2018, 23(8):8-16.
[29] 张桂芬, 张金良, 万方浩, 等. 甜菜筒喙象Lixus subtilis Boheman在藜麦上大暴发. 植物保护, 2017, 43(2):202-207.
[30] 张金良, 杨建国, 岳瑾, 等. 藜麦田甜菜筒喙象生物学特性初步研究. 植物保护, 2018, 44(4):162-166.
[31] 张金良, 张桂芬, 张奥, 等. 北京地区藜麦甜菜筒喙象年生活史和生物学特性初探. 中国农技推广, 2018, 34(5):54-56.
[32] 张金良, 梅丽, 袁志强, 等. 4.5%高效氯氰菊酯乳油不同浓度防治藜麦甜菜筒喙象效果试验研究. 农业科技通讯, 2019(6):153-155.
[33] 张金良, 梅丽, 张桂芬, 等. 藜麦甜菜筒喙象发生规律与防治技术. 农业工程, 2017, 7(2):133-135.
[34] Sun S L, Zhu Z D, Zhang J L, et al. Outbreak of choanephora stem rot caused by Choanephora cucurbitarum on quinoa (Chenopodium quinoa) in China. Plant Disease, 2018, 102(11):2379.
doi: 10.1094/PDIS-12-17-1922-PDN
[35] Rashika S, Brahmanage, Liu M, et al. Heterosporicola beijingense sp. nov. (Leptosphaeriaceae,Pleosporales) associated with Chenopodium quinoa leaf spots. Phytopathologia Mediterranea, 2020, 59(2):219-227.
[36] 张金良, 郭书辰, 梅丽, 等. 不同杀菌剂防治藜麦钉胞叶斑病试验研究初报. 农业科技通讯, 2019(2):118-120.
[1] Xiong Yousheng, Xiong Hanfeng, Guo Yanlong, Wang Haisheng, Liu Wei, Yan Yuxiang, Xie Yuanyuan, Zhou Jianxiong, Yang Lijun. Effects of Reducing Fertilizer Application Models on Wheat Yield and Nutrient Use Efficiencies in Rice-Wheat Cropping System [J]. Crops, 2022, 38(6): 118-123.
[2] Chen Yan, Chen Qiang, He Yi, Yu Huiping, Gao Junyi, Zhao Erwei, Lu Yingang. Effects of Tobacco Planting Ecoregions, Varieties and Their Interactions on Polyphenol Content and Quality of Flue-Cured Tobacco [J]. Crops, 2022, 38(6): 132-138.
[3] Yang Yan, Xu Ningsheng, Pan Zhechao, Li Yanshan, Yang Qiongfen, Zhang Lei. Effects of Paclobutrazol and Nitrogen on Yield and Economic Benefit of Potato [J]. Crops, 2022, 38(6): 139-144.
[4] Qiao Jiangfang, Zhang Panpan, Shao Yunhui, Liu Jingbao, Li Chuan, Zhang Meiwei, Huang Lu. Effects of Different Planting Densities and Varieties on Dry Matter Production and Yield Components of Summer Maize [J]. Crops, 2022, 38(6): 186-192.
[5] Wang Heshou. Effects of Different Nitrogen Application Rates on Nutritional Quality of Vegetable Sweet Potato [J]. Crops, 2022, 38(6): 208-213.
[6] Feng Yu, Xing Baolong. Research on the Growth Characteristics and Forage Quality of Different Cowpea Varieties in Cold Region [J]. Crops, 2022, 38(6): 220-225.
[7] Li Long, Xiao Rang, Zhang Yongling. Effects of Combined Application of Nitrogen, Phosphorus and Potassium on Seed Maize Yield and Economic Benefit [J]. Crops, 2022, 38(5): 111-117.
[8] Zhao Shifeng, Cao Lixia, Shi Bihong, Liu Wenting, Zhao Xuefeng, Liu Junxin, Zhang Lixia, Li Jiahao. Dry Matter Accumulation and Productivity Potential Evaluation of Main Forage Oat Varieties in China [J]. Crops, 2022, 38(4): 179-186.
[9] Zhou Jihong, Wang Junying, Meng Fanyu, Tong Guoxiang, Mei Li, Liu Guoming, Wang Yan, Luo Jun, Xie Chunyuan. Effects of Tillage Methods on Sowing Quality, Yield and Benefit of Wheat [J]. Crops, 2022, 38(4): 199-204.
[10] Qiao Yujia, Wei Ling, Xiao Junhong, Liu Bo, Yang Haifeng, Duan Xueyan. Analysis on the Yield Differences of Huanghuaihai Summer Soybeans in Different Years and Locations [J]. Crops, 2022, 38(4): 221-226.
[11] Wang Jiabao, Ji Huaiyuan, Mei Jiafa, Tao Zhiguo, Shu Zhifeng, Jiang Sanqiao. The Breeding of New Maize Variety Quankeyu 900 and Its Cultivation, Seed Production Techniques [J]. Crops, 2022, 38(4): 267-270.
[12] Wang Jiyue, Liu Zhenghong, Jiang Lian, Bai Yu, Zhang Ting, Liu Yan, Shi Denghong. Analysis of Traits, Texture, Nutrional Quality, and Antioxygenation of Friut from Five Different Okra (Abelmoschus esculentus L.) Cultivars [J]. Crops, 2022, 38(3): 200-204.
[13] Wang Siyu, Zuo Wenbo, Zhu Kaili, Guo Huimin, Xing Bao, Guo Yuqing, Bao Yuying, Yang Xiushi, Ren Guixing. Analysis and Evaluation of Agronomic Characteristics and Nutritional Qualities of 71 Quinoa Accessions [J]. Crops, 2022, 38(3): 63-72.
[14] Zhang Jun, Chen Shunquan, Zhang Wenqing, Li Gaochao, Bell. Adaptability of Ten Maize Varieties in Cameroon [J]. Crops, 2022, 38(3): 87-91.
[15] Hao Ruixuan, Sun Min, Ren Aixia, Lin Wen, Wang Peiru, Han Xuyang, Wang Qiang, Gao Zhiqiang. Research on the Relationship between Water Use and Dry Matter Accumulation and Quality of Wide Space Sowing Winter Wheat and the Regulation of Sowing Density [J]. Crops, 2022, 38(2): 119-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!