Crops ›› 2022, Vol. 38 ›› Issue (6): 186-192.doi: 10.16035/j.issn.1001-7283.2022.06.027

Previous Articles     Next Articles

Effects of Different Planting Densities and Varieties on Dry Matter Production and Yield Components of Summer Maize

Qiao Jiangfang1(), Zhang Panpan1(), Shao Yunhui2, Liu Jingbao1, Li Chuan1, Zhang Meiwei1, Huang Lu1   

  1. 1Cereal Crops Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
    2Institute of Wheat Research, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
  • Received:2021-06-16 Revised:2021-08-09 Online:2022-12-15 Published:2022-12-21
  • Contact: Zhang Panpan E-mail:qiaojf@126.com;zhangpan1602@163.com

Abstract:

Four maize hybrids, Zhengdan 309 (ZD309), Zhengdan 326 (ZD326), Zhengdan 958 (ZD958) and Zhongyu 303 (ZY303), with seven planting densities including 6.00×104, 6.75×104, 7.50×104, 8.25×104, 9.00×104, 9.75×104 and 10.50×104 plants/ha were set to analyse the effects of planting densities and varieties on dry matter production and yield formation of summer maize. The results indicated that higher plant height and ear height were obtained under the higher density treatments, and the plant heights and ear heights of ZY303 and ZD958 were higher. Plant dry matter production was increased with maize growth. The production before and after anthesis and maturity stage were also improved with increasing of planting densities. The dry matter was significantly increased by 16.1% in ZY303 and ZD958 than in ZD326 and ZD309. The treatment of 6.00×104 plants/ha got the highest ratio of dry matter in post-anthesis to maturity stage, and the ratio was the highest in ZD958. With the increase of planting densities, the 1000-grain weight was decreased while grain yield was improved at maturity stage. The highest yield (14.49t/ha) was found in the 10.50×104 plants/ha treatment, and yield of ZY303 was increased by 16.3% than that in ZD309 and ZD326. It was concluded that the combination of ZY303 with the density of 10.50×104 plants/ha could improve the post-anthesis dry matter production and biomass distribution, and to increase maize yield.

Key words: Summer maize, Planting density, Variety, Dry matter production, Yield components

Fig.1

Effects of density and varieties on the plant height of summer maize Different lowercase letters indicate significant difference at 0.05 level, the same below"

Fig.2

Effects of density and varieties on the ear height of summer maize"

Fig.3

Effects of density and varieties on the dry matter accumulation of summer maize"

Table 1

Effects of different factors on the dry matter production of summer maize before and after the anthesis stage"

因素
Factor
干物质量Dry matter (t/hm2) 花后干物质量/成熟期干物质量
Dry matter after anthesis/dry matter in maturity (%)
成熟期Maturity 花前Before anthesis 花后After anthesis
密度Densitiy
D1 20.46±1.58d 7.10±1.00d 13.36±1.69cd 65.15±5.29a
D2 19.73±2.04d 7.81±1.03cd 11.92±1.86d 60.23±5.12ab
D3 22.56±3.79c 8.41±1.17c 14.15±3.63bcd 61.65±8.71ab
D4 25.46±2.99b 9.71±0.73b 15.75±3.11b 61.33±5.88ab
D5 25.23±3.21b 10.28±1.50ab 14.95±3.57bc 58.75±7.40b
D6 25.52±3.55b 10.29±0.99ab 15.23±4.11bc 58.61±9.17b
D7 29.16±5.78a 10.92±1.61a 18.24±6.32a 60.92±10.15ab
品种Variety
ZD309 22.66±3.04b 9.31±1.83ab 13.35±2.77b 58.64±7.99bc
ZD326 21.79±3.58b 9.11±1.59ab 12.68±2.92b 57.72±6.83c
ZD958 25.50±5.93a 8.65±1.83b 16.86±5.29a 65.23±7.81a
ZD303 26.11±3.92a 9.81±1.71a 16.31±3.26a 62.20±5.67b
F检验F test
密度Density ** ** ** ns
品种Variety ** * ** **
密度×品种Density×variety ** ns ** **

Table 2

Effects of densities and varieties on the dry matter production of summer maize before and after the anthesis stage"

密度
Density
品种
Variety
干物质量Dry matter (t/hm2) 花后干物质量/成熟期干物质量
Dry matter after anthesis/dry matter in maturity (%)
成熟期Maturity 花前Before anthesis 花后After anthesis
D1 ZD309 21.18±0.97ghij 7.17±0.18fg 14.01±0.98defg 66.11±1.77abc
ZD326 18.49±0.97ij 7.37±0.18efg 11.12±1.11fg 60.02±2.98bcde
ZD958 20.01±0.16hij 6.28±1.59g 13.74±1.47defg 68.68±7.76ab
ZY303 22.16±0.77fghij 7.59±1.20efg 14.57±0.86cdefg 65.79±4.68abc
D2 ZD309 19.10±2.53hij 7.18±0.52fg 11.92±2.54fg 62.02±5.40abcde
ZD326 19.40±1.49hij 7.28±1.25fg 12.12±0.96efg 62.55±4.72abcd
ZD958 19.20±3.10hij 7.65±0.32efg 11.55±3.38fg 59.35±7.78bcde
ZY303 21.21±0.46ghij 9.13±0.46cdef 12.08±0.24efg 56.97±1.46bcde
D3 ZD309 23.01±2.56efghi 8.37±0.54defg 14.64±3.09cdefg 63.18±6.17abc
ZD326 18.09±4.75j 8.60±1.06def 9.49±3.91g 50.89±9.18de
ZD958 23.90±2.38cdefgh 7.50±1.79efg 16.40±1.14bcdef 68.86±5.23ab
ZY303 25.24±0.70cdefg 9.18±0.82cdef 16.06±0.58bcdef 63.64±2.58abc
D4 ZD309 23.10±3.33efghi 10.19±0.40abcd 12.90±3.67efg 55.12±7.82cde
ZD326 23.59±1.91defgh 9.08±0.39cdef 14.50±1.91cdefg 61.32±3.48abcde
ZD958 27.64±2.42cde 9.27±0.49cdef 18.37±2.75bcd 66.24±4.24abc
ZY303 27.52±1.18cde 10.28±0.80abcd 17.24±0.53bcde 62.66±1.55abcd
D5 ZD309 23.05±0.92efghi 9.95±1.83abcd 13.10±2.04efg 56.78±8.30bcde
ZD326 23.99±0.84cdefgh 9.97±1.44abcd 14.02±2.18defg 58.30±7.28bcde
ZD958 28.01±5.69bcd 9.51±0.45bcde 18.50±5.42bcd 65.31±5.63abc
ZY303 25.87±1.01cdefg 11.70±1.58a 14.16±2.34defg 54.62±7.16cde
D6 ZD309 23.23±5.05defghi 11.12±0.35abc 12.11±4.81efg 50.53±11.03e
ZD326 26.42±2.01cdef 10.35±0.99abcd 16.07±2.98bcdef 60.50±6.43bcde
ZD958 23.81±1.76cdefgh 10.51±0.99abcd 13.31±2.63defg 55.55±7.18cde
ZY303 28.60±2.96bc 9.17±0.51cdef 19.44±2.47bc 67.84±1.77ab
D7 ZD309 25.96±1.18cdefg 11.18±1.55abc 14.77±2.64cdef 56.71±7.55bcde
ZD326 22.52±1.88fghij 11.10±0.13abc 11.42±1.98fg 50.46±4.57e
ZD958 35.96±0.98a 9.82±2.31abcd 26.14±2.82a 72.64±6.84a
ZY303 32.21±3.55ab 11.60±1.96ab 20.61±3.32b 63.86±5.65abc

Table 3

Effects of different treatments on the grain yield and its components of summer maize"

因素
Factor
穗行数
Rows per ear
行粒数
Kernel number per row
千粒重
1000-grain weight (g)
产量
Yield (t/hm2)
收获指数
Harvest index
密度Density
D1 15.7±0.3a 36.9±0.6a 388.48±7.28a 10.32±0.36e 0.51±0.02b
D2 15.3±0.3ab 35.7±0.6a 373.58±7.28ab 10.77±0.36de 0.55±0.02a
D3 15.5±0.3a 35.2±0.6a 368.08±7.28ab 11.55±0.36cd 0.53±0.05ab
D4 15.3±0.3ab 35.5±0.6a 366.78±7.28ab 12.54±0.36bc 0.51±0.02b
D5 15.3±0.3ab 32.9±0.6b 366.01±7.28ab 12.49±0.36bc 0.50±0.02b
D6 14.6±0.3b 32.7±0.6b 356.19±7.28b 12.96±0.36b 0.52±0.04ab
D7 15.5±0.3a 33.1±0.6b 352.56±7.28b 14.49±0.36a 0.51±0.01bc
品种Variety
ZD309 14.6±0.2b 33.9±0.5b 369.64±5.5a 11.67±0.27c 0.52±0.05ab
ZD326 14.5±0.2b 33.3±0.5b 364.37±5.5a 11.19±0.27c 0.53±0.02a
ZD958 14.6±0.2b 35.8±0.5a 368.13±5.5a 12.50±0.27b 0.51±0.03ab
ZY303 17.6±0.2a 35.2±0.5a 367.39±5.5a 13.29±0.27a 0.51±0.01b
F检验F test
密度Density ns ** * ** ns
品种Variety ** ** ns ** ns
密度×品种Density×variety ns ns ns * ns

Table 4

Effects of densities and varieties on the grain yield and its components of summer maize"

密度
Density
品种
Variety
穗行数
Rows per ear
行粒数
Kernel number per row
千粒重
1000-grain weight (g)
产量
Yield (t/hm2)
收获指数
Harvest index
D1 ZD309 14.5±0.5bc 36.9±1.3ab 392.10±5.82abc 10.10±0.34ij 0.48±0.01abc
ZD326 14.9±0.1bc 37.0±0.5ab 380.00±7.26abc 10.09±0.18ij 0.55±0.03abc
ZD958 15.3±0.4b 36.9±1.0ab 372.63±17.70abc 10.35±0.39hij 0.52±0.02abc
ZY303 18.0±0.0a 36.9±2.1ab 409.17±41.12a 10.75±0.94ghij 0.48±0.03abc
D2 ZD309 14.7±0.5bc 34.5±0.6abcde 379.07±4.76abc 10.55±0.25ghij 0.56±0.03abc
ZD326 14.8±0.8bc 33.2±0.7bcdef 362.33±8.84abc 9.48±0.33j 0.49±0.01abc
ZD958 14.4±0.5bc 38.6±0.9a 388.03±8.17abc 11.89±0.29cdefghij 0.63±0.04ab
ZY303 17.5±0.6a 36.3±0.5abc 364.87±12.75abc 11.15±0.56efghij 0.53±0.02abc
D3 ZD309 14.8±0.4bc 33.5±0.5bcdef 374.47±10.03abc 10.68±0.54ghij 0.47±0.04abc
ZD326 14.4±0.4bc 34.1±1.0bcdef 369.40±5.36abc 10.90±0.41fghij 0.64±0.04a
ZD958 15.2±0.4b 36.7±0.7ab 374.47±11.97abc 12.04±0.63cdefghi 0.50±0.01abc
ZY303 17.7±0.5a 36.3±0.5abc 354.00±5.41bc 12.60±0.28cdefgh 0.50±0.00abc
D4 ZD309 14.7±0.3bc 35.8±0.7abcd 374.30±3.18abc 12.28±0.07cdefghi 0.54±0.05abc
ZD326 14.8±0.6bc 35.7±0.6abcd 369.63±4.82abc 12.80±0.42cdefg 0.55±0.05abc
ZD958 14.5±0.1bc 34.5±0.5abcde 364.47±12.72abc 11.77±0.86cdefghij 0.43±0.05c
ZY303 17.3±0.7a 36.0±0.7abc 358.70±7.35bc 13.31±0.63bcdef 0.48±0.02abc
D5 ZD309 14.9±0.3bc 31.0±0.8ef 347.33±10.62bc 11.06±0.52fghij 0.48±0.03abc
ZD326 14.3±0.4bc 31.7±3.0def 361.07±17.90abc 11.33±0.90defghij 0.47±0.04abc
ZD958 14.4±0.5bc 34.6±1.6abcde 357.57±12.37bc 13.49±0.76bcde 0.5±0.06abc
ZY303 17.5±0.5a 34.5±1.0abcde 398.07±43.93ab 14.07±0.76bc 0.55±0.04abc
D6 ZD309 14.0±0.0bc 33.9±1.4bcdef 368.60±12.87abc 13.71±0.93bcd 0.62±0.09ab
ZD326 14.0±0.7bc 31.2±0.6ef 356.33±5.48bc 11.82±0.63cdefghij 0.45±0.04bc
ZD958 13.3±1.3c 33.1±1.5bcdef 356.77±5.05bc 12.71±0.70cdefgh 0.54±0.05abc
ZY303 17.2±0.5a 32.4±1.1cdef 343.07±5.60c 13.62±0.26bcd 0.48±0.04abc
D7 ZD309 14.7±0.5bc 31.8±1.5def 351.60±12.20bc 13.28±1.75bcdef 0.52±0.08abc
ZD326 14.3±0.1bc 30.3±2.3f 351.80±5.89bc 11.91±1.24cdefghij 0.54±0.08abc
ZD958 14.8±0.8bc 35.8±0.8abcd 362.97±1.19abc 15.24±1.12b 0.42±0.03c
ZY303 18.1±0.4a 34.4±1.2bcdef 343.87±2.50c 17.53±0.48a 0.55±0.02abc
[1] Hernandez M D, Alfonso C, Echarte M M, et al. Maize transpiration efficiency increases with N supply or higher plant densities. Agricultural Water Management, 2021, 250:106816.
doi: 10.1016/j.agwat.2021.106816
[2] 柏延文. 种植密度对不同株型玉米生理特性及产量的影响. 杨凌: 西北农林科技大学, 2020.
[3] 任伟, 赵鑫, 黄收兵, 等. 不同密度下增施有机肥对夏玉米物质生产及产量构成的影响. 中国生态农业学报, 2014, 22(10):1146-1155.
[4] Chen L, Liu L, Li Z W, et al. High-density mapping for gray leaf spot resistance using two related tropical maize recombinant inbred line populations. Molecular Biology Reports, 2021, 48:3379-3392.
doi: 10.1007/s11033-021-06350-9 pmid: 33890197
[5] Guo Q, Huang G M, Guo Y L, et al. Optimizing irrigation and planting density of spring maize under mulch drip irrigation system in the arid region of northwest China. Field Crops Research, 2021, 266:108141.
doi: 10.1016/j.fcr.2021.108141
[6] 李晓鹏. 种植密度对玉米抗倒伏特性及其杂种优势的影响. 石河子: 石河子大学, 2020.
[7] 邬小春. 密度对不同株型夏玉米单株生产力与群体产量的影响. 杨凌: 西北农林科技大学, 2016.
[8] Shao H, Shi D F, Shi W J, et al. Nutrient accumulation and remobilization in relation to yield formation at high planting density in maize hybrids with different senescent characters. Archives of Agronomy and Soil Science, 2021, 67(4):487-503.
doi: 10.1080/03650340.2020.1737678
[9] 高繁, 胡田田, 姚德龙, 等. 密度和品种对夏玉米产量及水分利用效率的影响. 干旱地区农业研究, 2018, 36(6):21-25,47.
[10] 苏亚军, 焦婷, 吴建平, 等. 种植密度和品种对青饲玉米生物量与营养品质的影响. 草业科学, 2021, 38(5):935-946.
[11] 陈尚洪, 陈红琳, 沈学善, 等. 密度和施氮量对丘陵区机播夏玉米产量及倒伏影响研究. 西南农业学报, 2012, 25(3):805-808.
[12] 吴秋平, 蒋飞, 韩成卫, 等. 不同种植密度对青贮玉米生长和产量的影响. 山东农业科学, 2019, 51(6):79-82.
[13] 吴秋平, 蒋飞, 韩成卫, 等. 化控剂对不同密度青贮玉米生长和产量的影响. 玉米科学, 2020, 28(4):61-66.
[14] 刘胜男, 朱建义, 郑仕军, 等. 不同种植密度对玉米田杂草发生及玉米产量的影响. 杂草学报, 2016, 34(2):53-57.
[15] 张向前, 贾凯, 路战远, 等. 种植密度对春玉米广德5干物质积累量和产量的影响. 北方农业学报, 2018, 46(4):10-15.
[16] Hamdi A A, Alrawi O H. Evaluating the performance of the lines and their half diallel cross in maize (Zea mays L.) under plant density. IOP Conference Series: Earth and Environmental Science, 2021, 761:012073.
[17] 付健, 杨克军, 王玉凤, 等. 种植方式和密度对寒地高产玉米品种产量及光合物质生产特性的影响. 玉米科学, 2014, 22(6):84-90.
[18] 寇太记, 郭金瑞, 宋振伟, 等. 不同种植密度下东北春玉米根系特征及其干物质积累的差异比较. 玉米科学, 2013, 21(1):51-56.
[19] 石德杨, 李艳红, 夏德军, 等. 种植密度对夏玉米根系特性及氮肥吸收的影响. 中国农业科学, 2017, 50(11):2006-2017.
[20] 魏淑丽, 王志刚, 于晓芳, 等. 施氮量和密度互作对玉米产量和氮肥利用效率的影响. 植物营养与肥料学报, 2019, 25(3):382-391.
[21] 杨继芝, 龚国淑, 张敏, 等. 密度和品种对玉米田杂草及玉米产量的影响. 生态环境学报, 2011, 20(增1):1037-1041.
[22] 王志刚, 梁红伟, 余少波, 等. 玉米弱势粒库特征及其调控机理研究进展. 作物杂志, 2015(2):7-11.
[23] 胡旦旦, 张吉旺, 刘鹏, 等. 不同密度混播对玉米植株13C同化物分配和产量的影响. 应用生态学报, 2018, 29(10):3229-3236.
doi: 10.13287/j.1001-9332.201810.021
[24] Shao H, Shi D F, Shi W J, et al. The impact of high plant density on dry matter remobilization and stalk lodging in maize genotypes with a different stay-green degree. Archives of Agronomy and Soil Science, 2021, 67(4):504-518.
doi: 10.1080/03650340.2020.1737679
[1] Chen Yan, Chen Qiang, He Yi, Yu Huiping, Gao Junyi, Zhao Erwei, Lu Yingang. Effects of Tobacco Planting Ecoregions, Varieties and Their Interactions on Polyphenol Content and Quality of Flue-Cured Tobacco [J]. Crops, 2022, 38(6): 132-138.
[2] Mei Li. Research Progress and Development Prospect of Adaptive Cultivation of Quinoa in Beijing [J]. Crops, 2022, 38(6): 14-22.
[3] Zhang Dongxia, Qin Anzhen. Relationships among Crop Evapotranspiration, Soil Moisture and Temperature in Winter Wheat-Summer Maize Cropping System [J]. Crops, 2022, 38(6): 145-151.
[4] Chong Haotian, Shang Cheng, Zhang Yunbo, Huang Liying. Effects of Dense Planting with Reduced Nitrogen Application on Spikelet Formation of Different Types of Rice Varieties [J]. Crops, 2022, 38(6): 226-233.
[5] Shi Bixian, Tao Jianfei, Gao Yan, Xie Huihong, Abulimiti·Aierken , Cheng Pingshan, Maitituersun·Sadike , Sha Hong. Effects of Different Planting Densities on the Morphological Traits and Yields of Three Confectionery Sunflower Varieties [J]. Crops, 2022, 38(5): 195-200.
[6] Zhao Shifeng, Cao Lixia, Shi Bihong, Liu Wenting, Zhao Xuefeng, Liu Junxin, Zhang Lixia, Li Jiahao. Dry Matter Accumulation and Productivity Potential Evaluation of Main Forage Oat Varieties in China [J]. Crops, 2022, 38(4): 179-186.
[7] Qiao Yujia, Wei Ling, Xiao Junhong, Liu Bo, Yang Haifeng, Duan Xueyan. Analysis on the Yield Differences of Huanghuaihai Summer Soybeans in Different Years and Locations [J]. Crops, 2022, 38(4): 221-226.
[8] Wang Jiabao, Ji Huaiyuan, Mei Jiafa, Tao Zhiguo, Shu Zhifeng, Jiang Sanqiao. The Breeding of New Maize Variety Quankeyu 900 and Its Cultivation, Seed Production Techniques [J]. Crops, 2022, 38(4): 267-270.
[9] Li Feng, Gao Tongmei, Su Xiaoyu, Wei Libin, Wang Dongyong, Tian Yuan, Li Tongke, Yang Zihao, Wei Shuangling. Effects of Nitrogen Rate and Planting Density on Photosynthetic Rate, Yield, Nitrogen Use Efficiency of Sesame [J]. Crops, 2022, 38(2): 215-221.
[10] Tian Jing, Cheng Xuzhen, Fan Baojie, Wang Lixia, Liu Jianjun, Liu Changyou, Wang Suhua, Cao Zhimin, Chen Honglin, Wang Yan, Wang Shen. Current Situation and Development Trend of Mungbean Varieties in China [J]. Crops, 2021, 37(6): 15-21.
[11] Li Jiahui, Cheng Qin, Ou Kewei, Tan Qinliang, Pang Xinhua, Zhou Quanguang, Lü Ping, Song Qiqi, Tang Yuwei, Zhu Pengjin. Comparison of Tiller Characters of Sugarcane Varieties (Lines) in Different Sugarcane Regions and Their Effects on Yield and Yield Components [J]. Crops, 2021, 37(5): 79-86.
[12] Pei Zhichao, Zhou Jihua, Xu Xiangdong, Lan Hongliang, Wang Junying, Lang Shuwen, Zhang Weiqiang. Effects of Drought Treatment on Photosynthesis Rate, Antioxidant Properties of Leaves and Yield of Different Maize Varieties [J]. Crops, 2021, 37(5): 95-100.
[13] Wu Ke, Xie Huimin, Liu Wenqi, Mo Bingmao, Wei Guoliang, Lu Xian, Li Zhuanglin, Deng Senxia, Wei Shanqing, Liang He, Jiang Ligeng. Effects of Nitrogen, Phosphorus and Potassium Fertilizer on Rice Grain Yield and Yield Components in Double Cropping Rice Area of Southern China [J]. Crops, 2021, 37(4): 178-183.
[14] Ling Chen, Liu Hong, Yang Zhe, Huang Zhanquan, Chen Mengqiang, Rao Dehua, Xu Zhenjiang. Effects of Double-Cropping Rice Cultivation on the Expression of Quantitative Characteristics of Rice DUS Testing Example Varieties [J]. Crops, 2021, 37(4): 18-25.
[15] Liang Qian, Wu Qingshan, Ge Junzhu, Wu Xidong, Yang Yong’an, Hou Haipeng, Zhang Yao, Ma Zhiqi. Effects of Sowing Date on Rain-Fed Summer Maize Yield Formation and Resource Utilization in North China Plain [J]. Crops, 2021, 37(4): 136-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!