Crops ›› 2024, Vol. 40 ›› Issue (4): 216-222.doi: 10.16035/j.issn.1001-7283.2024.04.028

Previous Articles     Next Articles

Effects of Sowing Date on Agronomic Traits and Yield of Common Buckwheat Varieties (Lines)

Li Chunhua1(), Wu Han1, Jiayangduola 1, Wang Chunlong1, Wang Yanqing2, Ren Changzhong1()   

  1. 1Jilin Baicheng Academy of Agricultural Sciences, Baicheng 137000, Jilin, China
    2Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences / Yunnan Provincial Key Laboratory of Agricultural Biotechnology / Key Laboratory of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Kunming 650205, Yunnan, China
  • Received:2023-04-18 Revised:2023-05-10 Online:2024-08-15 Published:2024-08-14

Abstract:

In order to select the best buckwheat varieties (lines) for cultivation in western Jilin province and their optimal sowing dates, genetic diversity analysis were conducted using 14 agronomic traits and yields of 34 common buckwheat varieties (lines) on three sowing dates (22 May, 12 June and 3 July). The results showed that the sowing date had a significant impact on 14 agronomic traits of common buckwheat varieties (lines). The average of growth days with the delay in sowing shortened; four plant type traits, six grain shape traits and three yield traits showed the trend of first increasing and then decreasing, first decreasing and then increasing, and gradually increasing with the delay of sowing date. The heritability of each trait showed that the heritability of grain shape traits such as area of grain, girth of grain, length to width ratio, grain length, grain width, circularity and 1000-grain weight were 0.901-0.992 on the three sowing dates, which were all greater than the other traits. In the correlation analysis, the absolute values of the correlation coefficients between area of grain and girth of grain, length to width ratio and circularity, and number of seeds per plant and seed weight per plant were greater than 0.950 on the three sowing dates. The results also showed that the common buckwheat varieties suitable for early sowing are He OK, He T and Ka 1; the common buckwheat variety suitable for medium-term sowing is He T; and the common buckwheat variety suitable for late sowing is D2. In summary, the selection of suitable sowing periods in western Jilin province combined with the planting of qualitatively appropriate varieties can increase the yield of common buckwheat.

Key words: Common buckwheat, Sowing date, Agronomic traits, Yield

Table 1

The names and origins of the tested common buckwheat varieties (lines)"

编号Number 种质名称Germplasm name 来源Origin
1 白荞1号 中国吉林
2 贵甜1812-633 中国贵州
3 贵甜1812-636 中国贵州
4 贵甜1812-637 中国贵州
5 贵甜1812-643 中国贵州
6 贵甜2号 中国贵州
7 综甜2号 中国贵州
8 品甜2号 中国山西
9 苏甜2号 中国江苏
10 西农T1311 中国陕西
11 香甜2号 中国云南
12 蒙0208 中国内蒙古
13 蒙05-30 中国内蒙古
14 通荞1号 中国内蒙古
15 通荞2号 中国内蒙古
16 加1 加拿大
17 A2 俄罗斯
18 A4 俄罗斯
19 D1 俄罗斯
20 D2 俄罗斯
21 K1 俄罗斯
22 T1 俄罗斯
23 俄达1 俄罗斯
24 俄达2 俄罗斯
25 俄达3 俄罗斯
26 俄达4 俄罗斯
27 呵OK 俄罗斯
28 呵T 俄罗斯
29 喀1 俄罗斯
30 喀2 俄罗斯
31 喀4 俄罗斯
32 喀5 俄罗斯
33 喀6 俄罗斯
34 叶1 俄罗斯

Table 2

Effects of sowing date on agronomic traits of common buckwheat"

性状
Trait
平均值Average 变异系数Variable coefficient (%)
B1 B2 B3 B1 B2 B3
生育期Growth days (d) 111.24a 101.76b 93.53c 12.95 8.76 8.39
株高Plant height (cm) 137.77a 137.20a 130.02b 17.41 15.38 10.34
主茎节数Node number of main stem 16.83b 18.55a 15.96b 25.25 19.68 17.04
分枝数Number of branches 4.92a 4.72b 4.80ab 19.38 16.74 16.87
茎粗Stem diameter (mm) 8.40c 9.12b 9.79a 13.93 13.05 12.87
籽粒面积Area of grain (mm2) 17.86b 18.96a 18.46ab 14.33 19.09 16.20
籽粒周长Girth of grain (mm) 16.76b 17.21a 16.96ab 6.68 8.25 7.43
长宽比Length to width ratio 1.44a 1.45a 1.40b 9.66 9.72 9.29
籽粒长Grain length (mm) 6.06b 6.24a 6.07b 6.44 6.92 6.57
籽粒宽Grain width (mm) 4.23b 4.34ab 4.37a 10.17 12.44 10.98
籽粒圆度Circularity 0.72b 0.73ab 0.76a 10.92 10.96 10.53
千粒重1000-grain weight (g) 31.60ab 31.99a 30.67b 9.87 11.94 15.68
株粒数Number of seeds per plant 174.74b 231.09a 231.74a 45.58 58.31 65.35
株粒重Seed weight per plant (g) 5.07b 6.60a 6.79a 44.18 58.94 65.98

Table 3

Heritability of agronomic traits in different sowing dates of common buckwheat"

性状
Trait
遗传率Heritability
B1 B2 B3
生育期Growth days 0.763 0.780 0.761
株高Plant height 0.607 0.518 0.642
主茎节数Node number of main stem 0.650 0.637 0.710
分枝数Number of branches 0.693 0.608 0.698
茎粗Stem diameter 0.718 0.538 0.670
籽粒面积Area of grain 0.901 0.950 0.928
籽粒周长Girth of grain 0.909 0.949 0.933
长宽比Length to width ratio 0.937 0.971 0.932
籽粒长Grain length 0.957 0.992 0.958
籽粒宽Grain width 0.930 0.950 0.939
籽粒圆度Circularity 0.908 0.902 0.919
千粒重1000-kernel weight 0.947 0.960 0.951
株粒数Number of seeds per plant 0.832 0.852 0.874
株粒重Seed weight per plant 0.813 0.862 0.871

Table 4

Correlation coefficients for agronomic traits in different sowing dates of common buckwheat"

性状
Trait
播期
Sowing
date
生育期
Growth
days
株高
Plant
height
主茎节数
Node
number of
main stem
分枝数
Number
of
branches
茎粗
Stem
diameter
籽粒
面积
Area
of grain
籽粒
周长
Girth
of grain
长宽比
Length to
width
ratio
籽粒长
Grain
length
籽粒宽
Grain
width
籽粒圆度
Circularity
千粒重
1000-
grain
weight
株粒数
Number of
seeds per
plant
株高
Plant
height
B1 0.717**
B2 0.532**
B3 0.041
主茎节数
Node
umber of
main stem
B1 0.725** 0.841**
B2 0.601** 0.830**
B3 0.216 0.815**
分枝数
Number of
branches
B1 0.338 0.450** 0.403*
B2 0.521** 0.463** 0.330
B3 0.688** 0.196 0.246
茎粗
Stem
diameter
B1 0.287 0.559** 0.517** 0.525**
B2 0.287 0.420* 0.227 0.526**
B3 0.094 0.465** 0.386* 0.142
籽粒面积
Area
of grain
B1 -0.223 -0.135 -0.228 -0.112 -0.251
B2 -0.249 -0.062 -0.152 -0.138 0.158
B3 -0.254 0.216 0.080 -0.401* 0.336
籽粒周长
Girth of
grain
B1 -0.181 -0.110 -0.198 -0.142 -0.253 0.972**
B2 -0.206 -0.016 -0.076 -0.159 0.145 0.984**
B3 -0.164 0.214 0.087 -0.393* 0.264 0.972**
长宽比
Length to
width ratio
B1 0.266 0.285 0.355* 0.043 0.108 -0.430* -0.297
B2 0.481** 0.329 0.517** 0.191 -0.020 -0.630** -0.517**
B3 0.388* -0.170 -0.144 0.188 -0.073 -0.524** -0.400*
籽粒长
Grain
length
B1 -0.023 0.060 0.008 -0.083 -0.181 0.672** 0.781** 0.344*
B2 0.053 0.201 0.246 -0.094 0.096 0.748** 0.843** 0.001
B3 0.041 0.126 0.019 -0.316 0.244 0.716** 0.829** 0.162
籽粒宽
Grain
width
B1 -0.297 -0.251 -0.358* -0.121 -0.236 0.885** 0.828** -0.778** 0.314
B2 -0.361* -0.173 -0.295 -0.212 0.088 0.957** 0.917** -0.813** 0.574**
B3 -0.302 0.256 0.149 -0.352* 0.294 0.927** 0.885** -0.777** 0.489**
籽粒圆度
Circularity
B1 -0.313 -0.306 -0.381* -0.074 -0.102 0.453** 0.339 -0.985** -0.304 0.800**
B2 -0.482** -0.334 -0.514** -0.193 0.020 0.654** 0.549** -0.993** 0.036 0.832**
B3 -0.408* 0.172 0.136 -0.235 0.069 0.553** 0.423* -0.989** -0.135 0.788**
千粒重
1000-grain
weight
B1 -0.134 0.014 -0.146 0.041 -0.130 0.472** 0.465** -0.085 0.373* 0.346* 0.083
B2 -0.145 0.022 -0.043 -0.014 0.130 0.765** 0.765** -0.417* 0.628** 0.711** 0.455**
B3 -0.254 -0.077 -0.199 -0.323 0.136 0.625** 0.629** -0.269 0.494** 0.550** 0.291
株粒数
Number of
seeds per
plant
B1 0.017 -0.052 -0.101 -0.081 0.205 -0.271 -0.239 0.057 -0.338 -0.257 -0.034 -0.133
B2 -0.076 -0.007 -0.080 0.275 0.010 -0.221 -0.271 -0.106 -0.302 -0.149 0.079 -0.189
B3 -0.314 -0.358* -0.168 -0.239 0.010 -0.009 -0.028 -0.051 -0.024 0.001 0.050 0.141
株粒重
Seed weight
per plant
B1 -0.061 -0.110 -0.163 -0.112 0.141 -0.226 -0.189 0.028 -0.220 -0.143 0.005 0.055 0.951**
B2 -0.157 -0.019 -0.132 0.209 0.005 -0.059 -0.107 -0.229 -0.286 0.015 0.209 0.024 0.954**
B3 -0.289 -0.371* -0.178 -0.262 0.014 0.083 0.063 -0.086 0.052 0.079 0.089 0.214 0.989**

Table 5

Analysis of variance for yields of 34 common buckwheat varieties (lines)"

变异来源
Source of variation
自由度
df
平方和
SS
均方
MS
F
F value
播期Sowing date 2 2 354 154.54 1 177 077.27 386.80**
品种(系)
Variety (line)
33 14 423 521.35 437 076.40 143.63**
播期与品种(系)
Sowing date and
variety (line)
66 6 177 551.24 93 599.26 30.76**
误差Error 204 620 792.00 3043.10

Table 6

The yields of different varieties (lines) on different sowing dates kg/hm2"

编号Number B1 B2 B3
1 933.33def 642.22k 384.07rs
2 771.85ghijk 262.22o 327.41stu
3 698.52jk 289.26mno 291.85u
4 487.78l 263.33no 487.78pq
5 767.41ghijk 345.56mn 307.04tu
6 664.07k 755.93ij 476.67pq
7 1201.85b 836.67hi 641.48klmn
8 1036.67cd 835.56hi 511.11op
9 245.56m 304.81mno 321.48stu
10 516.67l 342.22mno 288.52u
11 1166.67bc 332.96mno 441.11pqr
12 885.19efg 352.96m 664.07jklm
13 858.89efghi 312.59mno 383.33rst
14 662.22k 370.74m 422.96qr
15 826.30fghij 328.52mno 715.19hijk
16 922.22def 305.19mno 606.30lmn
17 927.78def 533.70l 572.22no
18 974.07de 852.96h 1062.59b
19 858.15efghi 698.15jk 855.93def
20 969.26de 915.19gh 1381.85a
21 723.33jk 747.41j 980.00c
22 881.11efgh 972.96fg 676.30ijkl
23 735.56ijk 517.04l 839.26ef
24 515.19l 1019.63ef 852.96def
25 931.85def 1066.67de 715.93hijk
26 749.63hijk 1017.78ef 754.07gh
27 1373.33a 1358.89ab 916.67cde
28 1393.70a 1394.07a 933.70c
29 1426.30a 1301.11bc 918.89cde
30 1047.04cd 896.30gh 631.11lmn
31 904.81ef 1110.74d 722.96hij
32 974.44de 915.19gh 743.70hi
33 981.85de 1223.33c 824.44fg
34 950.37def 485.56l 598.52mn
平均值Mean 881.26 703.16 654.46
[1] 陈庆富. 荞麦属植物科学. 北京: 科学出版社, 2012.
[2] Awatsuhara R, Harada K, Maeda T. Antioxidative activity of the buckwheat polyphenol rutin in combination with ovalbumin. Molecular Medicine Reports, 2010, 3:121-125.
doi: 10.3892/mmr_00000228 pmid: 21472210
[3] Koyama M, Nakamura C, Nakamura K. Changes in phenols contents from buckwheat sprouts during growth stage. Journal of Food Science and Technology, 2013, 50(1):86-93.
doi: 10.1007/s13197-011-0316-1 pmid: 24425891
[4] Kreft S, Knapp M, Kreft I. Extraction of rutin from buckwheat (Fagopyrum esculentum Moench) seeds and determination by capillary electrophoresis. Journal of Agricultural and Food Chemistry, 1999, 47:4649-4652.
doi: 10.1021/jf990186p pmid: 10552865
[5] 尹万利, 雷绪劳, 王敬昌, 等. 甜荞的食用价值与高产栽培措施. 陕西农业科学, 2009(3):207-209.
[6] Gondola I, Papp P. Origin,genographical distribution and polygenic relationship of common buckwheat (Fagopyrum esculentum Moench.). The European Journal of Plant Science and Biotechnology, 2010, 4:17-33.
[7] Alamprese C, Casiraghi E, Pagani M A. Development of gluten- free fresh egg pasta analogues containing buckwheat. European Food Research Technology, 2007, 225:205-213.
[8] Griffith J Q, Couch J F, Lindauer M A. Effect of rutin on increased capillary fragility in man. Experimental Biology and Medicine, 1944, 55:228-229.
[9] Wieslander G, Fabjan N, Vogrincic M, et al. Eating buckwheat cookies is associated with the eduction in serum levels of myeloperoxidase and cholesterol: a double blind crossover study in day-care centre staffs. Journal of Experimental Medicine, 2011, 225(2):123-130.
[10] 李少昆, 王克如, 肖春华, 等. 新疆玉米高产创建研究与实践. 新疆农垦科技, 2010, 33(4):13-15.
[11] 葛维德, 赵阳, 刘冠求. 播种期对苦荞主要农艺性状及产量的影响. 杂粮作物, 2009, 29(1):36-37.
[12] 李春花, 王艳青, 卢文洁, 等. 播期对苦荞品种主要农艺性状及产量的影响. 中国农学通报, 2015, 31(19):92-95.
[13] 王欣欣, 卜一, 李尽朝, 等. 播种期对3个甜荞品种产量及主要性状的影响. 作物杂志, 2014(2):110-113.
[14] 刘伟春, 谢锐, 金晓蕾. 不同播种期对荞麦生物产量及品质影响的研究. 现代农业, 2021(5):43-46.
[15] 冯引弟, 张科, 王佐惠, 等. 播种期对鲜食玉米产量及行管性状的影响. 安徽农业科学, 2022, 50(8):36-39.
[16] 马一铭, 邓昆鹏, 窦忠玉, 等. 播期和密度对春小麦吉春13号产量及其构成因素的影响. 浙江农业大学, 2020, 61(5):993-994,997.
[17] 刘玉兰, 元明浩, 范文忠, 等. 播种期对吉林小粒大豆生育进程、产量及品质的影响. 大豆科学, 2019, 38 (4):542-547.
[18] 孙琪, 耿艳秋, 金峰, 等. 播期对直播水稻产量、花后各器官干物质和氮素积累及转运的影响. 作物杂志, 2020(5):119-126.
[19] 张宗文, 林汝法. 荞麦种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006:9-19.
[20] 大澤良, 堤忠宏, 鵜飼保雄. そば農業形質の品種比較による遺伝率の推定. 育種学雑誌, 1997, 47(1):181.
[21] 汤国民, 夏德君, 杜青福, 等. 播种期对鲜食糯玉米产量及其相关性状的影响. 山东农业科学, 2012, 44(5):58-60.
[22] 刘荣厚, 封山海, 柴岩, 等. 播种期对荞麦主要性状的影响. 陕西农业科学, 1990(1):31-32.
[23] 吴燕, 衣杰. 不同播期对荞麦产量因素的影响. 杂粮作物, 2004, 24(2) :124-125.
[24] 陈有清, 杨明君. 不同播期对旱地荞麦产量的影响. 山西农业科学, 1991, 19(12) :3.
[25] 李春花, 尹桂芳, 王艳青, 等. 云南苦荞种质资源主要性状的遗传多样性分析. 植物遗传资源学报, 2016, 17(6):993-999.
[26] 侯元凯, 黄琳, 周忠惠. 文冠果果实性状相关性研究. 林业科学研究, 2011, 24(3):395-398.
[27] Skinner D Z, Bauchan G R, Auricht G, et al. A method for the efficient management and utilization of large germplasm collections. Crop Science, 1999, 39 (4):1237-1242.
[28] 李春花, 加央多拉, 吴晗, 等. 苦荞农艺性状遗传多样性分析及综合评价. 作物研究, 2022, 36(4):363-368.
[29] 邢志鹏, 曹伟伟, 钱海军, 等. 播期对不同类型机插稻产量及光合物质生产特性的影响. 核农学报, 2015, 29(3):528-537.
doi: 10.11869/j.issn.100-8551.2015.03.0528
[30] 高卿, 张永伟, 林团荣. 播种期对荞麦结实率及产量的影响. 内蒙古农业科技, 2012(3):28-29.
[31] 尚爱军, 张雄, 柴岩. 播期对荞麦籽粒蛋白质及其组分含量的影响. 榆林高等专科学校学报, 1999, 9(4):48-51.
[32] Omidbaigi R, Mastro G D E. Influence of sowing time on the biological behavior, biomass production, and rutin content of buckwheat (Fagopyrum esculentum Moench). Italian Journal of Agronomy, 2004, 8(1):47-50.
[33] 李君霞, 樊永强, 代书桃, 等. 播期对不同谷子品种干物质积累、转运和产量的影响. 河南农业科学, 2021, 50(7):39-47.
[34] 李静, 刘学仪, 向达兵, 等. 不同播期对荞麦上次发育及产量的影响. 河南农业科学, 2013, 42(10):15-18.
[35] 穆兰海, 赵永红, 陈彩锦, 等. 分期播种对荞麦受精结实率及产量的影响. 科技信息, 2012(29):459-460,479.
[1] Ma Yanhua, Sun Dequan, Li Suiyan, Lin Hong, Pan Liyan, Li Donglin, Fan Jinsheng, Wu Jianzhong, Yang Guowei. Comprehensive Evaluation of Main Agronomic Traits and Screening of Excellent Germplasms of Maize Landraces in Heilongjiang Province [J]. Crops, 2024, 40(4): 103-112.
[2] Yuan Shuai, He Mingjuan, Cui Can, Han Yu, Yu Peng, Yi Zhenxie. Effects of Different Base Application Amounts of Calcium- Magnesium Hydrotalcite in Early Rice on Yield and Rice Quality of Double-Cropping Rice in Southern Hunan [J]. Crops, 2024, 40(4): 113-120.
[3] Wang Wenxia, Chang Bokai, Xia Qing, Zhi Hui, Du Jie. Effects of Foliar Spraying Selenium on Physiological Characteristics, Yield and Quality of Flax [J]. Crops, 2024, 40(4): 130-137.
[4] Du Jie, Feng Yu, Xia Qing, Zhi Hui, Wang Wenxia. Mechanism of Exogenous Brassinolide in Alleviating Drought Stress Injury at Panicle Differentiation Stage in Foxtail Millet [J]. Crops, 2024, 40(4): 144-151.
[5] Cao Li, Yang Jianhui, Zhang Li, Ren Wei, Cao Zhengpeng, Ma Fang, Guan Yong. Effects of Different Concentrations of Nano-Selenium Fertilizer on Yield, Quality and Selenium Content of Broccoli [J]. Crops, 2024, 40(4): 152-157.
[6] Zhang Lijuan, Qin Yukun, Chen Junying. Effects of Nitrogen Application Rate on Cotton Yield Formation and Nitrogen Utilization Efficiency under Rape-Cotton Double Cropping Straw Returning Condition [J]. Crops, 2024, 40(4): 158-163.
[7] Ren Liang, Fang Mengying, Wu Zhihai, Dong Xuerui, Lu Lin, Yan Peng, Dong Zhiqiang. Effects of Ethylene-Chlormequat-Potassium (ECK) on Sorghum [Sorghum bicolor (L.) Moench.] Lodging Resistance and Yield [J]. Crops, 2024, 40(4): 164-171.
[8] Zhou Zhou, Shen Xinya, Wang Jun, Liu Lijun. Effects of Combination of Controlled-Release Fertilizer and Common Urea on Yield, Nitrogen Use Efficiency and Grain Quality in Rice [J]. Crops, 2024, 40(4): 180-187.
[9] Li Hu, Wu Zishuai, Liu Guanglin, Luo Qunchang, Chen Chuanhua, Zhu Qinan. Effects of Different Cultivation Conditions on Cadmium Content of Grains and Main Characteristics in Rice [J]. Crops, 2024, 40(4): 203-208.
[10] Lü Bo, Ding Liang, Guo Cong, Chen Feng, Zhou Haiping, Wang Xuesong, Dong Xiaolin, Xiang Fayun. Effects of Compound Microbial Fertilizer on Soil Nutrients and Rhizosphere Bacterial Community in Cotton Field [J]. Crops, 2024, 40(4): 209-215.
[11] Wang Ruopeng, Lü Wei, Liu Wenping, Wen Fei, Han Junmei, Liu Xiaxia. Effects of Different Cultivation Modes on Yield of Sesame and Water and Heat of Soil [J]. Crops, 2024, 40(4): 247-252.
[12] Song Quanhao, Cao Yanwei, Jin Yan, Xiao Yonggui, Song Jiajing, Zhao Lishang, Chen Jie, Bai Dong, Zhu Tongquan. Comprehensive Evaluation of 50 Wheat Germplasm Resources Derived from ICARDA [J]. Crops, 2024, 40(4): 54-61.
[13] Xie Huifang, Wei Menghan, Song Zhongqiang, Liu Jinrong, Wang Suying, Xing Lu, Wang Shujun, Liu Haiping, Jia Xiaoping, Song Hui. Analyzing of the Mixed Inheritance Model of Major Gene Plus Polygene of Main Traits in Foxtail Millet [J]. Crops, 2024, 40(4): 82-89.
[14] Guo Haibin, Zhang Jungang, Wang Wenwen, Xue Zhiwei, Xu Haitao, Feng Xiaoxi, Wang Bingong, Wang Chengye. Response of Photosynthetic Characteristics, Root Growth and Yield of Summer Maize to Subsoiling and Increasing Density in Lime Concretion Black Soil [J]. Crops, 2024, 40(3): 109-118.
[15] Liu Yue, Jia Yonghong, Yu Yuehua, Zhang Jinshan, Wang Runqi, Li Dandan, Shi Shubing. Effects of Nitrogen Fertilizer Management on Growth and Development, Yield and Quality of Peanut in Northern Xinjiang [J]. Crops, 2024, 40(3): 119-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!