Crops ›› 2024, Vol. 40 ›› Issue (4): 209-215.doi: 10.16035/j.issn.1001-7283.2024.04.027

;

Previous Articles     Next Articles

Effects of Compound Microbial Fertilizer on Soil Nutrients and Rhizosphere Bacterial Community in Cotton Field

Lü Bo1(), Ding Liang1(), Guo Cong1, Chen Feng1, Zhou Haiping2, Wang Xuesong2, Dong Xiaolin3, Xiang Fayun1()   

  1. 1Industrial Crops Institute of Hubei Academy of Agricultural Sciences / Key Laboratory of Cotton Biology and Genetic Breeding in the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430072, Hubei, China
    2Ezhou Agricultural Science Research Institute, Ezhou 436000, Hubei, China
    3Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs / College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
  • Received:2023-07-26 Revised:2023-11-28 Online:2024-08-15 Published:2024-08-14

Abstract:

In order to explore the effects of compound microbial fertilizer on soil nutrients and rhizosphere bacterial community in cotton field, five treatments of without application of compound microbial fertilizer (T0) and application of compound microbial fertilizer (T1-T4) were set up. Field experiments were conducted to determine the nutrient content of cotton rhizosphere soil, cotton seed and lint yield under different treatments, and high-throughput 16S rDNA sequencing was performed on rhizosphere soil samples from different treatments. The results showed that compared with T0, the contents of soil organic matter, alkaline nitrogen, available phosphorus and available potassium in T1-T4 treatments increased significantly, the seed cotton yield increased by 5.59%-14.28%, and the lint yield increased by 5.65%-16.64%. The dominant bacteria in different soil treatments at phylum level were mainly Proteobacteria and Acidobacteria, while the dominant bacterial in different treatments at the order level were mainly Sphingomonadales, Acidobacteriales and Gemmatimonadales. Compared with the control, the relative abundance of Sphingomonas and Gemmatimonas in the soil treated with T1-T4 increased significantly, while the relative abundance of Acidobacterium and RB41 decreased significantly. The relative abundance of Sphingomonas and Gemmatimonas were positively correlated with the contents of organic matter, alkaline nitrogen, available phosphorus and available potassium. In summary, the application of compound microbial fertilizer can increase the abundance of the dominant rhizosphere bacteria of cotton, Sphingomonas and Gemmatimonas, promote the release of soil nutrients, and increase cotton yield.

Key words: Compound microbial fertilizer, Cotton, Yield, Soil nutrients, Bacterial communities

Table 1

Effects of different treatments on soil nutrients"

处理
Treatment
碱解氮
Alkali hydrolyzed nitrogen (mg/kg)
有效磷
Available phosphorus (mg/kg)
速效钾
Available K (mg/kg)
有机质
Organic matter (g/kg)
pH
T0 63.51±1.32c 10.55±0.12c 306.51±4.25c 7.90±0.02b 7.81±0.01a
T1 69.84±1.56b 11.43±0.21b 336.70±5.31b 8.54±0.03a 7.79±0.02a
T2 78.84±0.89a 12.13±0.14a 350.59±2.74a 8.86±0.02a 7.83±0.01a
T3 82.35±1.41a 12.02±0.17a 363.96±4.72a 8.93±0.03a 7.82±0.01a
T4 80.54±1.76a 11.77±0.15b 346.07±6.16a 8.71±0.01a 7.82±0.02a

Table 2

Effects of different treatments on cotton yield"

处理
Treatment
籽棉产量Seed cotton yield 皮棉产量Lint yield 衣分
Lint percentage
(%)
数值
Value (kg/hm2)
比对照±
Comparative control ± (%)
数值
Value (kg/hm2)
比对照±
Comparative control ± (%)
T0 5666.80±104.11c 2404.65±89.93b 42.41±0.85a
T1 5983.65±102.24bc 5.59 2540.40±85.37ab 5.65 42.44±0.82a
T2 6293.75±99.05ab 11.06 2718.60±90.44a 13.06 43.17±0.77a
T3 6475.75±94.48a 14.28 2804.70±85.24a 16.64 43.30±0.85a
T4 6136.05±96.20b 8.28 2637.90±85.80ab 9.70 42.97±0.73a

Table 3

Diversity index of bacterial community in rhizosphere soil"

处理
Treatment
覆盖率
Coverage
Shannon指数
Shannon index
ACE指数
ACE index
T0 0.750b 7.151d 21 064.81c
T1 0.805a 7.281c 22 164.07c
T2 0.768b 7.413b 23 264.12c
T3 0.746b 7.531b 28 064.46a
T4 0.744b 7.824a 25 064.85b

Fig.1

Relative abundance of dominant bacteria in different treatments at the phylum level"

Fig.2

Relative abundance of dominant bacteria in different treatments at the order level"

Fig.3

Relative abundance of dominant bacteria in different treatments"

Fig.4

Redundancy analysis of the relative abundance of dominant bacterial genera and soil nutrients in different treatments"

[1] 中华人民共和国国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2019.
[2] 刘海洋, 王伟, 张仁福, 等. 新疆主要棉区棉花黄萎病发生概况. 植物保护, 2015, 41(3):138-142.
[3] 刘廷利, 惠慧, 阚家亮, 等. 新疆北部棉花黄萎病菌培养特性、致病型、致病性分化及ISSR遗传变异研究. 棉花学报, 2017, 29(6):541-549.
doi: 10.11963/1002-7807.ltlzbl.20170927
[4] 刘海洋. 新疆棉花黄萎病田土壤与病株根部微生物群落多样性分析. 北京: 中国农业大学, 2018.
[5] 武杞蔓, 张金梅, 李玥莹, 等. 有益微生物菌肥对农作物的作用机制研究进展. 生物技术通报, 2021, 37(5):221-230.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0846
[6] 陶伟, 叶长东, 苏天明, 等. 复合微生物菌肥配施化肥对芥菜生长及土壤环境的影响. 西南农业学报, 2020, 33(5):1042-1047.
[7] 张德楠, 张燕钊, 滕秋梅, 等. 配施复合微生物肥对石漠化地区火龙果园土壤养分含量及生物学特征的影响. 西南农业学报, 2022, 35(7):1623-1630.
[8] 梁永进, 尚海丽, 盘文政, 等. 微生物菌肥对‘K326’烤烟生长发育及产质量的影响. 中国农学通报, 2021, 37(23):45-51.
doi: 10.11924/j.issn.1000-6850.casb2020-0661
[9] 张志鹏, 蔡燕飞, 段继贤, 等. 复合微生物菌肥在小麦上的应用肥效研究. 广东农业科学, 2019, 46(10):1-6.
[10] 王亚文, 史慧芳, 张鹏, 等. 微生物菌肥在设施蔬菜生产中的研究进展. 农学学报, 2021, 11(11):27-32.
doi: 10.11923/j.issn.2095-4050.casb2021-0063
[11] 乌音嘎, 乌恩, 吴澜, 等. 复合微生物肥对碱土生物学性状与土壤肥力的影响. 中国土壤与肥料, 2021(1):197-203.
[12] 涂保华, 符菁, 赵远, 等. 基于光合菌剂的复合微生物菌肥对土壤速效养分含量及微生物群落结构多样性的影响. 西南农业学报, 2019, 32(12):2878-2884.
[13] 杨皓, 庄家尧, 郑康, 等. 不同载体菌肥对刺槐光合特性及土壤养分、细菌群落的影响. 核农学报, 2023, 37(4):844-853.
doi: 10.11869/j.issn.1000-8551.2023.04.0844
[14] 李丽艳, 朱瑞艳, 杜迎辉, 等. 微生物肥料对草莓根腐病防治效果及对根围土壤微生物群落多样性的影响. 安徽农业科学, 2018, 46(33):111-113.
[15] 何飞燕. 复合微生物菌剂对花生的促生作用及土壤细菌菌群变化研究. 长沙: 湖南农业大学, 2022.
[16] 宋以玲, 马学文, 于建, 等. 复合微生物肥料替代部分复合肥对花生生长及根际土壤微生物和理化性质的影响. 山东科学, 2019, 32(1):38-45,123.
doi: 10.3976/j.issn.1002-4026.2019.01.006
[17] 吕博, 孟庆忠, 张成, 等. 复合微生物肥对棉花生长与产量的影响. 新疆农业科学, 2021, 58(6):1006-1011.
doi: 10.6048/j.issn.1001-4330.2021.06.004
[18] Pulatov A, Amanturdiev S, Nazarov K, et al. Effect of biofertilizers on growth and yield of cotton in different soil conditions. Cotton Genomics and Genetics, 2016, 7:1-11.
[19] 吕博, 孟庆忠, 张成, 等. 微生物菌肥对棉花黄萎病的防治效果研究. 农村经济与科技, 2020, 31(23):64-65.
[20] 张泽, 王桂花, 吕宁, 等. 基于GIS的耕地地力评价研究——以农五师89团为例. 新疆农业科学, 2012, 49(5):831-836.
[21] Han G M, Chen Q Q, Zhang S X, et al. Biochar effects on bacterial community and metabolic pathways in continuously cotton-cropped soil. Journal of Soil Science and Plant Nutrition, 2019, 19(2):249-261.
[22] 朱菲莹, 张屹, 肖姬玲, 等. 生物有机肥对土壤微生物群落结构变化及西瓜枯萎病的调控. 微生物学报, 2019, 59(12):2323-2333.
[23] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000.
[24] 丁文成, 何萍, 周卫. 我国新型肥料产业发展战略研究. 植物营养与肥料学报, 2023, 29(2):201-221.
[25] 杨东敏, 徐圣君, 曾贤桂, 等. 浅析施用微生物肥料对土壤质量的影响. 环境保护科学, 2020, 46(3):138-142.
[26] 杜倩, 李琳, 刘铁男, 等. 复合菌肥对盐渍土土壤微生物多样性的影响. 中国农学通报, 2022, 38(2):38-43.
doi: 10.11924/j.issn.1000-6850.casb2021-0153
[27] 李国, 易强, 许世武, 等. 微生物菌剂对新疆棉花连作障碍的消减研究. 中国土壤与肥料, 2020(1):202-207.
[28] 王启尧, 赵庚星, 赵永昶, 等. 滨海盐渍棉田施用微生物菌肥的降盐效果及棉花长势响应. 华北农学报, 2021, 36(增1):267-274.
[29] 王俊铎, 郑巨云, 龚照龙, 等. 微生物菌剂对土壤理化性质及棉花生长的影响. 新疆农垦科技, 2023, 46(5):65-68.
[30] 刘京京, 陈学文, 梁爱珍, 等. 微生物肥料及其对黑土旱田作物应用的效果. 土壤与作物, 2023, 12(2):179-195.
[31] 孙杨, 王璐, 赵璐, 等. 复合微生物菌肥对苹果再植病害调控及对根围土壤真菌群落结构的影响. 植物病理学报, 2022, 52(2):256-268.
[32] 杨肖芳, 郭瑞, 姚燕来, 等. 微生物菌剂对连作地块草莓生长、土壤养分及微生物群落的影响. 核农学报, 2023, 37(6):1253-1262.
doi: 10.11869/j.issn.1000-8551.2023.06.1253
[33] 薛国萍, 白红梅, 杜金伟, 等. 不同处理措施对辣椒连作土壤细菌群落结构及多样性的影响. 中国蔬菜, 2023(3):78-84.
[34] 徐绍伟, 林凤, 徐正国, 等. 生物菌剂对烟田土壤理化性质细菌群落的影响及其相关性研究. 安徽农业科学, 2021, 49(12):167-171.
[35] 刘辉, 韦璐璐, 朱龙发, 等. 鞘氨醇单胞菌的研究进展. 微生物学通报, 2023, 50(6):2738-2752.
[36] Asaf S, Numan M, Khan A L, et al. Sphingomonas: from diversity and genomics to functional role in environmental remediation and plant growth. Critical Reviews in Biotechnology, 2020, 40(2):138-152.
doi: 10.1080/07388551.2019.1709793 pmid: 31906737
[37] Li F, Chen L, Zhang J B, et al. Bacterial community structure after long-term organic and inorganic fertilization reveals important associations between soil nutrients and specific taxa involved in nutrient transformations. Frontiers in Microbiology, 2017, 8:187.
doi: 10.3389/fmicb.2017.00187 pmid: 28232824
[38] Carbonetto B, Rascovan N, Álvarez R, et al. Structure, composition and metagenomic profile of soil microbiomes associated to agricultural land use and tillage systems in Argentine Pampas. PLoS ONE, 2014, 9(6):e99949.
[1] Yuan Shuai, He Mingjuan, Cui Can, Han Yu, Yu Peng, Yi Zhenxie. Effects of Different Base Application Amounts of Calcium- Magnesium Hydrotalcite in Early Rice on Yield and Rice Quality of Double-Cropping Rice in Southern Hunan [J]. Crops, 2024, 40(4): 113-120.
[2] Wang Wenxia, Chang Bokai, Xia Qing, Zhi Hui, Du Jie. Effects of Foliar Spraying Selenium on Physiological Characteristics, Yield and Quality of Flax [J]. Crops, 2024, 40(4): 130-137.
[3] Du Jie, Feng Yu, Xia Qing, Zhi Hui, Wang Wenxia. Mechanism of Exogenous Brassinolide in Alleviating Drought Stress Injury at Panicle Differentiation Stage in Foxtail Millet [J]. Crops, 2024, 40(4): 144-151.
[4] Cao Li, Yang Jianhui, Zhang Li, Ren Wei, Cao Zhengpeng, Ma Fang, Guan Yong. Effects of Different Concentrations of Nano-Selenium Fertilizer on Yield, Quality and Selenium Content of Broccoli [J]. Crops, 2024, 40(4): 152-157.
[5] Zhang Lijuan, Qin Yukun, Chen Junying. Effects of Nitrogen Application Rate on Cotton Yield Formation and Nitrogen Utilization Efficiency under Rape-Cotton Double Cropping Straw Returning Condition [J]. Crops, 2024, 40(4): 158-163.
[6] Ren Liang, Fang Mengying, Wu Zhihai, Dong Xuerui, Lu Lin, Yan Peng, Dong Zhiqiang. Effects of Ethylene-Chlormequat-Potassium (ECK) on Sorghum [Sorghum bicolor (L.) Moench.] Lodging Resistance and Yield [J]. Crops, 2024, 40(4): 164-171.
[7] Zhou Zhou, Shen Xinya, Wang Jun, Liu Lijun. Effects of Combination of Controlled-Release Fertilizer and Common Urea on Yield, Nitrogen Use Efficiency and Grain Quality in Rice [J]. Crops, 2024, 40(4): 180-187.
[8] Li Chunhua, Wu Han, Jiayangduola , Wang Chunlong, Wang Yanqing, Ren Changzhong. Effects of Sowing Date on Agronomic Traits and Yield of Common Buckwheat Varieties (Lines) [J]. Crops, 2024, 40(4): 216-222.
[9] Wang Ruopeng, Lü Wei, Liu Wenping, Wen Fei, Han Junmei, Liu Xiaxia. Effects of Different Cultivation Modes on Yield of Sesame and Water and Heat of Soil [J]. Crops, 2024, 40(4): 247-252.
[10] Guo Haibin, Zhang Jungang, Wang Wenwen, Xue Zhiwei, Xu Haitao, Feng Xiaoxi, Wang Bingong, Wang Chengye. Response of Photosynthetic Characteristics, Root Growth and Yield of Summer Maize to Subsoiling and Increasing Density in Lime Concretion Black Soil [J]. Crops, 2024, 40(3): 109-118.
[11] Liu Yue, Jia Yonghong, Yu Yuehua, Zhang Jinshan, Wang Runqi, Li Dandan, Shi Shubing. Effects of Nitrogen Fertilizer Management on Growth and Development, Yield and Quality of Peanut in Northern Xinjiang [J]. Crops, 2024, 40(3): 119-126.
[12] Zhang Suyu, Yue Junqin, Li Xiangdong, Jin Haiyang, Ren Dechao, Yang Mingda, Shao Yunhui, Wang Hanfang, Fang Baoting, Zhang Deqi, Shi Yanhua, Qin Feng, Cheng Hongjian. Effects of Nitrogen Application on Photosynthetic Rate, Dry Matter Accumulation after Anthesis and Yield of Zhengmai 366 [J]. Crops, 2024, 40(3): 127-132.
[13] Xia Yulan, Wang Dexun, Zhao Yuanyuan, Fan Zhiyong, Li Juan, Wang Ge, Zhao Zhihao, Shi Hongzhi. Effects of Potassium Fertilizer Dosage and Topdressing Period on Chemical Composition, Yield and Quality of Leaves ofBlack Shank-Resistant Tobacco Honghuadajinyuan [J]. Crops, 2024, 40(3): 133-140.
[14] Chen Biwei, Ju Xikai, Sun Yiming, Li Qinghua, Liu Qing, Zeng Lusheng. Effects of Drought in Different Periods on Yield Formation and Starch Gelatinization Characteristics of Starchy Sweet Potato [J]. Crops, 2024, 40(3): 141-147.
[15] Yi Qin, Huang Miao, Yang Guotao, Hu Yungao, Chen Hong, Wang Xuechun. Effects of Combined Application of Organic and Inorganic Fertilizers on Yield and Quality of Rapeseed in Sichuan [J]. Crops, 2024, 40(3): 163-167.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!