Crops ›› 2024, Vol. 40 ›› Issue (4): 96-102.doi: 10.16035/j.issn.1001-7283.2024.04.012

Previous Articles     Next Articles

Effects of Simulated Seawater Stress on Wheat Germination

Li Han1(), Zhao Yuxue1, Zhou Xiaoke1, Li Yun2, Guo Zhenqing1, Wang Jian1, Han Yucui1(), Lin Xiaohu1()   

  1. 1College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology / Hebei Key Laboratory of Crop Stress Biology, Qinhuangdao 066004, Hebei, China
    2Research Center of Rural Vitalization, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, China
  • Received:2023-06-19 Revised:2023-07-17 Online:2024-08-15 Published:2024-08-14

Abstract:

In order to clarify the effects of saline-alkali (simulated seawater) stress on germination related traits of different wheat varieties, four wheat varieties were used as materials, simulated seawater solutions with 0.0 (CK), 0.2, 0.4, 0.6, 0.8 and 1.0 times standard salinity were used for stress, and the ideal screening concentration of simulated seawater stress at the germination stage was determined by analyzing the differences in salinity tolerance during germination of four wheat varieties. The results showed that Jinnong 7 and Zhongmai 998 showed much less inhibition in the relative germination potential and relative germination rate compared to Tainong 18 and Jimai 229 under saline-alkali stress, and the inhibition of the four varieties was more serious with the increase of saline-alkali concentration. The relative shoot length, relative maximum root length and relative shoot fresh weight of the four wheat varieties decreased significantly under stress compared to CK, and the inhibition was more serious with the increase of saline-alkali concentration, among which Zhongmai 998 was the least inhibited, and Jimai 229 was the most inhibited. When the concentration was increased to 0.8 times, all four wheat varieties could not germinate. The effects of saline-alkali stress on relative root fresh weight of four varieties were significantly different, and Jinnong 7 was the least affected. Compared with CK, the relative root-shoot ratio of Jinnong 7 and Jimai 229 increased significantly under saline-alkali stress, and under 0.4 times concentration, Jinnong 7 (250.63) was higher than those of other varieties. Comprehensive analysis showed that Jinnong 7 and Zhongmai 998 were saline-alkali tolerant varieties, Tainong 18 was intermediate variety, and Jimai 229 was saline-alkali sensitive varieties, the 0.4 times concentration was the suitable concentration for screening wheat saline-alkali tolerance during germination stage. The correlations between relative root-shoot ratio and relative germination potential, relative shoot length, relative maximum root length, and relative shoot fresh weight were not significant, but there were significant or extremely significant correlations among other indexes of seven saline-alkali related characteristics at wheat germination stage.

Key words: Wheat, Germination period, Saline-alkali stress, Simulated seawater

Table 1

Formula for standard salinity artificial seawater"

成分
Constituent
分子量
Molecular
weight
溶液浓度
Solution
concentration (g/L)
氯化钠NaCl 58.44 23.926
硫酸钠Na2SO4 142.04 4.008
氯化钾KCl 74.56 0.677
碳酸氢钠NaHCO3 84.00 0.196
溴化钾KBr 119.01 0.098
硼酸H3BO3 61.83 0.026
氟化钠NaF 41.99 0.003
六水氯化镁MgCl2·6H2O 203.33 0.053
二水氯化钙CaCl2·2H2O 147.03 0.010
六水氯化锶SrCl2·6H2O 266.64 0.001
纯水H2O 加纯水溶解各种盐,室温定容至1 L

Table 2

Relative germination potential of different wheat varieties under salt-alkali stress %"

品种
Variety
浓度Concentration
0.0 (CK) 0.2 0.4 0.6 0.8 1.0
津农7号Jinnong 7 100.00±0.00Aa 100.00±0.00Aa 93.37±5.77Aa 77.77±5.08Ba 67.77±5.08Ca 54.43±5.10Da
中麦998 Zhongmai 998 100.00±0.00Aa 100.00±0.00Aa 92.23±5.08Aa 80.00±3.30Ba 75.53±10.72Ba 51.13±5.10Ca
泰农18 Tainong 18 100.00±0.00Aa 88.27±7.67Bb 87.33±6.69Ba 75.87±8.17Ca 52.10±6.71Db 17.43±3.23Eb
济麦229 Jimai 229 100.00±0.00Aa 72.30±0.00Bc 57.53±17.48Cb 17.27±0.60Db 13.77±3.23DEc 0.00±0.00Ec

Table 3

Relative germination rate of different wheat varieties under salt-alkali stress %"

品种
Variety
浓度Concentration
0.0 (CK) 0.2 0.4 0.6 0.8 1.0
津农7号Jinnong 7 100.00±0.00Aa 100.00±0.00Aa 97.78±3.85Aa 86.67±0.00Ba 75.56± 5.09Ca 66.66±5.77Da
中麦998 Zhongmai 998 100.00±0.00Aa 100.00±0.00Aa 97.78±1.92Aa 85.56±1.93Ba 77.78±8.39Ba 55.55±6.94Ca
泰农18 Tainong 18 100.00±0.00Aa 93.06±3.64Ab 92.07±4.96Aa 77.11±4.54Bb 74.69±4.11Ba 37.69±13.74Cb
济麦229 Jimai 229 100.00±0.00Aa 87.30±2.35Ac 68.08±20.54Bb 24.12±3.15Cc 12.57±3.55CDb 4.68±4.05Dc

Table 4

Relative shoot length of different wheat varieties under salt-alkali stress %"

品种
Variety
浓度Concentration
0.0 (CK) 0.2 0.4 0.6
津农7号Jinnong 7 100.00±0.00Aa 51.25±7.52Ba 15.47±1.21Cb 5.09±0.22Db
中麦998 Zhongmai 998 100.00±0.00Aa 73.97±5.49Ba 48.96±5.99Ca 8.15±1.05Da
泰农18 Tainong 18 100.00±0.00Aa 60.24±12.28Ba 19.27±3.05Cb 4.43±1.03Db
济麦229 Jimai 229 100.00±0.00Aa 69.73±19.01Ba 4.76±0.61Cc 3.32±0.92Cb

Table 5

Relative maximum root length of different wheat varieties under salt-alkali stress %"

品种
Variety
浓度Concentration
0.0 (CK) 0.2 0.4 0.6
津农7号Jinnong 7 100.00±0.00Aa 27.18±4.22Bb 6.95±0.54Cb 3.50±0.78Cb
中麦998 Zhongmai 998 100.00±0.00Aa 52.78±7.29Ba 22.77±4.35Ca 10.44±2.08Da
泰农18 Tainong 18 100.00±0.00Aa 44.31±11.30Ba 11.43±4.62Cb 4.08±0.16Cb
济麦229 Jimai 229 100.00±0.00Aa 41.69±7.64Bab 7.31±0.53Cb 3.21±0.18Cb

Table 6

Relative shoot fresh weight of different wheat varieties under salt-alkali stress %"

品种
Variety
浓度Concentration
0.0 (CK) 0.2 0.4 0.6
津农7号Jinnong 7 100.00±0.00Aa 57.72±6.81Ba 37.55±8.42Ca 7.30±0.14Db
中麦998 Zhongmai 998 100.00±0.00Aa 67.31±4.17Ba 45.48±3.22Ca 10.01±1.38Da
泰农18 Tainong 18 100.00±0.00Aa 57.83±11.66Ba 21.53±3.97Cb 5.92±0.81Db
济麦229 Jimai 229 100.00±0.00Aa 71.22±13.14Ba 8.18±1.28Cc 5.10±2.90Cc

Table 7

Relative root fresh weight of different wheat varieties under salt-alkali stress %"

品种
Variety
浓度Concentration
0.0 (CK) 0.2 0.4 0.6
津农7号Jinnong 7 100.00±0.00Aa 100.00±21.89Aa 94.76±27.82Aa 18.38±2.58Ba
中麦998 Zhongmai 998 100.00±0.00Aa 77.80±9.49Ba 61.99±19.03Bab 11.99±2.36Cb
泰农18 Tainong 18 100.00±0.00Aa 96.27±13.26Aa 24.75±21.06Bbc 10.24±3.96Bb
济麦229 Jimai 229 100.00±0.00Aa 99.43±15.61Aa 19.53±5.55Bc 7.46±1.80Bb

Table 8

Relative root-shoot ratio of different wheat varieties under saline-alkali stress %"

品种
Variety
浓度Concentration
0.0 (CK) 0.2 0.4 0.6
津农7号Jinnong 7 100.00±0.00Ca 172.59±24.36Ba 250.63±28.94Aa 251.98±38.65Aa
中麦998 Zhongmai 998 100.00±0.00Aa 116.45±21.16Ab 138.54±51.03Aab 122.16±32.13Ac
泰农18 Tainong 18 100.00±0.00Aa 171.50±44.96Aa 120.47±107.75Ab 171.82±54.25Abc
济麦229 Jimai 229 100.00±0.00Da 140.38±9.32Cab 235.32±33.39Bab 197.97±17.09Aab

Table 9

Correlation analysis of wheat characteristics at germination stage under saline-alkali stress"

性状
Trait
相对发芽势
Relative germination
potential
相对发芽率
Relative
germination rate
相对芽长
Relative shoot
length
相对最大根长
Relative maximum
root length
相对芽鲜重
Relative shoot
fresh weight
相对根鲜重
Relative root
fresh weight
相对根冠比
Relative root-
shoot ratio
相对发芽势
Relative germination potential
1.000
相对发芽率
Relative germination rate
0.652**
1.000
相对芽长Relative shoot length 0.489* 0.629** 1.000
相对最大根长
Relative maximum root length
0.449*
0.562**
0.969**
1.000
相对芽鲜重
Relative shoot fresh weight
0.497*
0.656**
0.992**
0.959**
1.000
相对根鲜重
Relative root fresh weight
0.494*
0.694**
0.900**
0.814**
0.938**
1.000
相对根冠比
Relative root-shoot ratio
0.067
0.423*
0.204
0.134
0.265
0.447*
1.000
[1] 张谦, 陈凤丹, 冯国艺, 等. 盐碱土改良利用措施综述. 天津农业科学, 2016, 22(8):35-39.
[2] 王伟, 刘艳涛, 王志, 等. 基于叶片生理指标的小麦芽期耐盐性评价. 广西植物, 2022, 42(2):315-323.
[3] 刘文瑜, 李健荣, 杨发荣, 等. 盐胁迫对40份藜麦种质种子萌发的影响及其耐盐性评价. 分子植物育种, 2021, 19(3):983-995.
[4] Amish M, Toshiba M, Athena B A, et al. High salinity reduces the content of a highly abundant 23-kDa protein of the mangrove Bruiser paranormal. Atalanta, 2005, 221(1):135-140.
[5] Zhao Y, Liu M, He L, et al. A cytologist NAD+-dependent GPDH from maize (ZmGPDH1) is involved in conferring salt and osmotic stress tolerance. BMC Plant Biology, 2019, 19(1):16.
[6] 张巧凤, 陈宗金, 吴纪中, 等. 小麦种质芽期和苗期的耐盐性鉴定评价. 植物遗传资源学报, 2013, 14(4):620-626.
doi: 10.13430/j.cnki.jpgr.2013.04.007
[7] 张婷婷, 于崧, 于立河, 等. 松嫩平原春小麦耐盐碱性鉴定及品种(系)筛选. 麦类作物学报, 2016, 36(8):1008-1019.
[8] 于崧, 张婷婷, 于立河, 等. 盐碱胁迫对小麦种子萌发特性的影响. 黑龙江八一农垦大学学报, 2019, 31(2):20-27.
[9] 赵旭, 王林权, 周春菊, 等. 盐胁迫对不同基因型冬小麦发芽和出苗的影响. 干旱地区农业研究, 2005, 23(4):108-112.
[10] 孙君艳, 程琴, 李淑梅. 盐胁迫对小麦种子萌发及幼苗生长的影响. 分子植物育种, 2017, 15(6):2348-2352.
[11] 肖冬宇, 吴端阳, 文雪, 等. 两种小麦在盐胁迫下早期幼苗生长及生理生化指标变化规律. 湖北农业科学, 2021, 60(15):29-33.
[12] 唐奇志, 刘兆普, 陈铭达, 等. 海水处理对向日葵幼苗生长及叶片一些生理特性的影响. 植物学通报, 2004, 21(6):667-672.
[13] 刘妍妍, 吴纪中, 许璋阳, 等. 人工海水胁迫下小麦芽期和苗期的耐盐性鉴定方法. 植物生理学报, 2014, 50(2):214-222.
[14] 熊孝先, 姜传贤, 李明兹. 电感耦合等离子体原子发射光谱法及在海水分析中的应用. 海洋科学, 1988(1):58-60.
[15] 余世洲. 普通小麦种质资源耐盐性鉴定及相关基因挖掘. 杨凌: 西北农林科技大学, 2020.
[16] 刘祖祺, 张石城. 植物抗性生理学. 北京: 中国农业出版社, 1994:222-287.
[17] Munns R. Comparative physiology of salt and water stress. Plant Cell and Environment, 2002, 25:239-250.
[18] Jeannette S, Bayuelo-Jiménez, Richard C, et al. Salinity tolerance of Phaseolus species during germination and early seedling growth. Crop Science, 2002, 42(5):1584-1594.
[19] 张荣庆, 陈慧, 王瑞清. 小黑麦耐盐种质资源的筛选. 种子, 2016, 35(10):61-64.
[20] 孟祥浩, 林琪, 张玉梅, 等. 盐胁迫对小麦萌发的影响及耐盐指标的筛选. 华北农学报, 2014, 29(4):175-180.
doi: 10.7668/hbnxb.2014.04.031
[21] 彭智, 李龙, 柳玉平, 等. 小麦芽期和苗期耐盐性综合评价. 植物遗传资源学报, 2017, 18(4):638-645.
[22] 郭瑞, 李峰, 周际, 等. 亚麻响应盐、碱胁迫的生理特征. 植物生态学报, 2016, 40(1):69-79.
doi: 10.17521/cjpe.2015.0240
[23] 冯巩俐, 徐玉玲, 蒋晓煜, 等. 两种春小麦幼苗光合特性对盐胁迫的响应比较. 甘肃农业大学学报, 2020, 55(1):45-55.
[24] 梁超, 张学英, 杨秀凤, 等. 耐盐丰产小麦品种德抗961的耐盐生理机制. 山东农业科学, 2007(1):46-49.
[25] 郭晓丽, 时丽冉, 白丽荣, 等. 不同小麦品种的耐盐性研究. 江苏农业科学, 2008(4):43-45.
[26] 王宝增, 刘玉杰. 低浓度NaCl对非盐生植物小麦的生理效应. 南京农业大学学报, 2009, 32(2):15-19.
[27] 梁海. Na2SO4胁迫对小麦萌发及幼苗生长的影响. 内蒙古农业科技, 2013(6):40,43.
[28] 张敏. 不同小麦品种耐盐差异的生理生化机制研究. 泰安: 山东农业大学, 2007.
[29] 李士磊, 霍鹏, 高欢欢, 等. 复合盐胁迫对小麦萌发的影响及耐盐阈值的筛选. 麦类作物学报, 2012, 32(2):260-264.
[30] 陈二影, 王润丰, 秦岭, 等. 谷子芽期耐盐碱综合鉴定及评价. 作物学报, 2020, 46(10):1591-1604.
doi: 10.3724/SP.J.1006.2020.04064
[1] Li Chunhua, Wu Han, Jiayangduola , Wang Chunlong, Wang Yanqing, Ren Changzhong. Effects of Sowing Date on Agronomic Traits and Yield of Common Buckwheat Varieties (Lines) [J]. Crops, 2024, 40(4): 216-222.
[2] Zhang Ziyi, Wang Xuehu, Yuan Ying, Shen Zhifeng. Effects of Humic Acid Suspension Agent on Seed Germination and Seedling Growth of Wheat under NaCl Stress [J]. Crops, 2024, 40(4): 263-268.
[3] Song Quanhao, Cao Yanwei, Jin Yan, Xiao Yonggui, Song Jiajing, Zhao Lishang, Chen Jie, Bai Dong, Zhu Tongquan. Comprehensive Evaluation of 50 Wheat Germplasm Resources Derived from ICARDA [J]. Crops, 2024, 40(4): 54-61.
[4] Yan Jinlong, Zhang Dongxu, Feng Liyun, Wu Zhiyuan, Li Yijuan, Zhang Junling. Identification of Disease Resistance-Related Genes of Wheat Cultivars (Lines) in Southeastern Shanxi by KASP Assays [J]. Crops, 2024, 40(4): 90-95.
[5] Zhang Suyu, Yue Junqin, Li Xiangdong, Jin Haiyang, Ren Dechao, Yang Mingda, Shao Yunhui, Wang Hanfang, Fang Baoting, Zhang Deqi, Shi Yanhua, Qin Feng, Cheng Hongjian. Effects of Nitrogen Application on Photosynthetic Rate, Dry Matter Accumulation after Anthesis and Yield of Zhengmai 366 [J]. Crops, 2024, 40(3): 127-132.
[6] Liu Ying, Yin Zequn, Wu Baichen, Xu Mingli, Liu Chang, Shi Huishu, Pang Bo, Miao Xingfen. Effects of Compound Saline-Alkali Stress on Germination Period of Different Foxtail Millet Varieties and Screening of Saline-Alkali Tolerance Varieties [J]. Crops, 2024, 40(3): 207-215.
[7] Sun Hui, Zhao Changping, Yue Jieru, Bai Xiucheng, Yang Jifang, Ye Zhijie, Zhang Fengting. Effects of Different Ecological Environments and Daily Temperature Difference on Fertility Alteration and Agronomic Traits in BS Type Photo-Thermal Sensitive Male Sterile Wheat Lines [J]. Crops, 2024, 40(3): 40-46.
[8] Sun Tong, Yang Yushuang, Ma Ruiqi, Zhu Yingjie, Chang Xuhong, Dong Zhiqiang, Zhao Guangcai. Effects of PASP-KT-NAA and Ethylene-Chlormequat-Potassium on the Lodging Resistance, Yield, and Quality of Wheat [J]. Crops, 2024, 40(2): 113-121.
[9] Xu Zheli, Zhu Weiqi, Wang Litao, Shi Feng, Wei Zhiying, Wang Lina, Qiu Hongwei, Zhang Xiaoying, Li Huili. Effects of Irrigation and Foliar Nitrogen Application on Yield, Quality and Photosynthetic Characteristics of Late Sowing Wheat [J]. Crops, 2024, 40(2): 139-147.
[10] Yang Enze, Xie Rui, Han Ping'an, Zhang Yonghu, Liu Jinchuan, Niu Suqing, Wen Rui, Wang Chunyong, Jin Xiaolei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits of 162 Tartary Buckwheat Resources in Inner Mongolia [J]. Crops, 2024, 40(2): 15-22.
[11] Zhang Jun, Cai Suyun, Xu Zihao, Hou Lei, He Runli, Yin Guifang, Wang Lihua, Wang Yanqing, Lu Wenjie, Sun Daowang. Cloning, Bioinformatics and Expression Analysis of FtERF Gene in Fagopyrum tataricum [J]. Crops, 2024, 40(2): 23-29.
[12] He Jiamin, Zhang Yongqing, Zhang Meng, Liang Ping, Wang Dan, Yan Fanfan. Effects of Seed Soaking with Uniconazole on Agronomic and Physiological Characteristics of Quinoa under Saline-Alkali Stress [J]. Crops, 2024, 40(2): 234-241.
[13] Zhao Guangcai. Analysis of Wheat Seedling Situation in Northern Winter Wheat Region and Suggestions for Spring Management Techniques [J]. Crops, 2024, 40(2): 255-260.
[14] Du Hanmei, Tan Lu, Chen Bo, Yu Qiuzhu, Wu Dandan, Wang Anhu. Comprehensive Evaluation of Cadmium Tolerance of Tartary Buckwheat at Seedling Stage [J]. Crops, 2024, 40(2): 40-53.
[15] Li Hongyan, Yao Xiaohua, Yao Youhua, Li Xin, Wu Kunlun. Advances in Genetic and Regulatory Mechanisms of Blue Grain Traits in Wheat Crops [J]. Crops, 2024, 40(2): 9-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!