Crops ›› 2024, Vol. 40 ›› Issue (4): 263-268.doi: 10.16035/j.issn.1001-7283.2024.04.034

Previous Articles     Next Articles

Effects of Humic Acid Suspension Agent on Seed Germination and Seedling Growth of Wheat under NaCl Stress

Zhang Ziyi(), Wang Xuehu, Yuan Ying, Shen Zhifeng   

  1. The Research and Development Department of Hebei Monband Biotech Co., Ltd., Xingtai 054300, Hebei, China
  • Received:2023-06-16 Revised:2023-09-15 Online:2024-08-15 Published:2024-08-14

Abstract:

Humic acid with different molecular weights have different functional characteristics. This experiment aimed to investigate the effects of different molecular weight humic acids on the growth of wheat seedlings under NaCl stress, which was beneficial to promoting the rational development and utilization of humic acid resources. The double-layer filter paper culture method was used in the experiment, and five treatments were set as follows: clear water (T1), 200 mmol/L NaCl solution (T2), T2+humic acid suspension I (adding high molecular weight, T3), T2+humic acid suspension II (adding medium molecular weight, T4), T2+humic acid suspension III (adding small molecular weight, T5). The results showed compared with T2 treatment, the addition of humic acid could significantly reduce the relative conductivity of wheat roots, and increase the germination percentage, root length, plant height, soluble sugar content, total chlorophyll content, and the activities of peroxidase, superoxide dismutase, and catalase of wheat. The above indicators increased by 17.81%, 68.46%, 90.63%, 21.37%, 19.88%, 61.07%, 14.59%, 30.70%, respectively in T3 treatment; in T4 treatment, increased by 20.12%, 101.80%, 80.21%, 33.42%, 23.39%, 62.19%, 39.43% and 46.73%, respectively; In T5 treatment, increased by 21.26%, 166.67%, 54.17%, 35.73%, 24.56%, 63.43%, 43.60%, 48.22%, respectively. Comprehensive analysis showed that different molecular weights of humic acid could improved the germination percentage and the salt resistance of seedlings. Among them, high molecular weight humic acid had a significant effect on promoting the growth of wheat leaves, while small molecular weight humic acid had played an important role in promoting the growth of wheat roots, improving the activity of antioxidant enzymes in plants and enhancing the stability of cell membranes.

Key words: Wheat, Humic acid with different molecular weights, NaCl stress, Seed germination, Seedling growth characteristics, Antioxidant enzyme

Table 1

Effects of seed soaking with humic acid suspension agent with different molecular weights on wheat seed germination under NaCl stress"

处理
Treatment
发芽势
Germination
potential (%)
发芽率
Germination
percentage (%)
发芽指数
Germination
index
活力指数
Vitality
index
T1 76.67±2.33a 90.00±3.00a 38.67±0.70a 174.01±3.18a
T2 34.33±4.06c 58.00±4.04c 17.12±1.39c 19.08±1.54c
T3 44.67±3.18b 68.33±1.43b 21.88±0.74b 27.83±0.95c
T4 45.21±1.53b 69.67±1.45b 22.15±1.41b 31.47±2.64b
T5 45.34±2.08b 70.33±1.86b 22.49±0.99b 47.14±2.14b

Fig.1

Effects of seed soaking with humic acid suspension agent with different molecular weights on root length and plant height of wheat under NaCl stress Different lowercase letters indicate significant differences among different treatments (P < 0.05), the same below."

Fig.2

Effects of seed soaking with humic acid suspension agent with different molecular weights on contents of chlorophyll and soluble sugar of wheat leaves under NaCl stress"

Fig.3

Effects of seed soaking with humic acid suspension agent with different molecular weights on relative conductivity of wheat leaves and roots under NaCl stress"

Fig.4

Effects of seed soaking with humic acid suspension agent with different molecular weight on antioxidant enzyme activity of wheat leaves under NaCl stress"

Table 2

Correlation analysis of wheat growth, electrical conductivity and antioxidant enzyme activity under different molecular weight humic acid suspensions agent"

指标
Index
发芽势
Germination
potential
发芽率
Germination
percentage
根长
Root
length
株高
Plant
height
总叶绿素
含量
Total
chlorophyll
content
可溶性糖
含量
Soluble
sugar
content
叶片相对
电导率
Relative
conductivity
of leaf
根相对
电导率
Relative
conductivity
of root
SOD PDD CAT
发芽势Germination potential 1.000
发芽率Germination percentage 0.986** 1.000
根长Root length 0.944* 0.931* 1.000
株高Plant height 0.969** 0.919* 0.885* 1.000
总叶绿素含量Total chlorophyll content 0.651 0.0748 0.747 0.447 1.000
可溶性糖含量Soluble sugar content -0.989** -0.955* -0.914* -0.994** -0.537 1.000
叶电导率Relative conductivity of leaf -0.970** -0.996** -0.925* -0.883* -0.798 0.927* 1.000
根电导率Relative conductivity of root -0.974** -0.995** -0.909* -0.904* -0.742 0.946* 0.988** 1.000
SOD -0.642 -0.552 -0.469 -0.785 0.103 0.743 0.477 0.577 1.000
PDD -0.541 -0.413 -0.374 -0.725 0.271 0.646 0.344 0.387 0.852 1.000
CAT -0.670 -0.559 -0.504 -0.829 0.126 0.769 0.488 0.552 0.949* 0.967** 1.000
[1] Xu Z S, Chen X J, Lu X P, et al. Integrative analysis of transcriptome and metabolome reveal mechanism of tolerance to salt stress in oat (Avena sativa L.). Plant Physiology and Biochemistry, 2021, 160:315-328.
[2] Kaushal S S. Increased salinization decreases safe drinking water. Environmental Science & Technology, 2016, 50(6):2765-2766.
[3] Hatami E, Shokouhian A A, Ghanbari A R, et al. Alleviating salt stress in almond rootstocks using of humic acid. Scientia Horticulturae, 2018, 237:296-302.
[4] Zou P, Yang X, Yuan Y, et al. Purification and characterization of a fucoidan from the brown algae Macrocystis pyrifera and the activity of enhancing salt-stress tolerance of wheat seedlings. International Journal of Biological Macromolecules, 2021, 180:547-558.
[5] Wang H, Wu Z, Chen C, et al. Effects of salt and alkali stresses on growth and ion balance in rice (Oryza sativa L.). Plant Soil and Environment, 2011, 57(6):286-294.
[6] 张亮, 李玉婷, 夏文静, 等. 盐胁迫下异甜菊醇浸种对油菜种子萌发和幼苗生长的影响. 福建农业学报, 2020, 35(8):883-890.
[7] 宋海燕, 尹友谊, 宋建中. 不同来源腐植酸的化学组成与结构研究. 华南师范大学学报, 2009, 41(1):61-66.
[8] Zhang X, Schmidt R E. Hormone-containing products' impact on antioxidant status of tall fescue and creeping bentgrass subjected to drought. Crop Science, 2000, 40(5):1344-1349.
[9] Aydin A, Kant C, Turan M. Humic acid application alleviates salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. African Journal of Agricultural Research, 2012, 7:1073-1086.
[10] Canellas L P, Olivares F L, Aguiar N O, et al. Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae, 2015, 196:15-27.
[11] 张水勤, 袁亮, 林治安, 等. 腐植酸促进植物生长的机理研究进展. 植物营养与肥料学报, 2017, 23(4):1065-1076.
[12] 谷端银, 王秀峰, 魏珉, 等. 腐植酸类物质与植物抗逆性研究进展. 山东农业大学学报, 2016, 47(3):321-326.
[13] 吴洪燕, 吴钦泉, 杨越超, 等. 不同分子量腐植酸组分对小麦幼苗和油菜生长的影响. 腐植酸, 2020(6):51-55.
[14] 周丽平, 袁亮, 赵秉强, 等. 不同分子量风化煤腐植酸对玉米植株主要代谢物的影响. 植物营养与肥料学报, 2019, 25(1):142-148.
[15] 梁媛媛, 王泽平, 史秋哲, 等. 不同分子量黄腐酸对冬小麦生长和养分吸收利用的影响. 植物营养与肥料学报, 2023, 29 (2):308-322.
[16] 段才绪, 何平, 谢英赞, 等. 盐胁迫对决明种子萌发和幼苗生理特性的影响. 西南师范大学学报, 2013, 38(2):73-78.
[17] 张艳, 彭燕, 何小双. 甜菜碱浸种对干旱胁迫下白三叶种子萌发特性的影响. 中国草地学报, 2014, 36(4):31-37.
[18] 徐新娟, 李勇超. 2种植物相对电导率测定方法比较. 江苏农业科学, 2014, 42(7):311-312.
[19] 刘凯月, 郭玉洁, 刘冬云. 干旱和盐胁迫对3种地被植物种子萌发特性的影响. 林业与生态科学, 2018, 33(1):88-92.
[20] 乔佩, 卢存福, 卢骁, 等. 盐胁迫对诱变小麦种子萌发及幼苗生理特性的影响. 中国生态农业学报, 2013, 21(6):720-727.
[21] Yu L L, Liu Y, Peng Y, et al. Overexpression of cyanoalanine synthase 1 improves germinability of tobacco seeds under salt stress conditions. Environmental and Experimental Botany, 2021, 182:1-9.
[22] 马太光, 张瑞腾, 郭秀霞, 等. NaCl胁迫下腐植酸对黄瓜种子发芽特性的影响. 湖北农业科学, 2016, 55(9):2287-2289.
[23] Qian S, Ding W M, Li Y C, et al. Characterization of humic acids derived from Leonardite using a solid-state NMR spectroscopy and effects of Humic acids on growth and nutrient uptake of snap bean. Chemical Speciation and Bioavailability, 2015, 27(4):156-161.
[24] 张小冰, 邢勇, 郭乐, 等. 腐植酸钾浸种对干旱胁迫下玉米幼苗保护酶活性及MDA含量的影响. 中国农学通报, 2011, 27 (7):69-72.
[25] Akladious S A, Mohamed H A. Ameliorative effects of calcium nitrate and humic acid on the growth, yield component and biochemical attribute of pepper (Capsicum annuum) plants grown under salt stress. Scientia Horticulturae, 2018, 236(7):244-250.
[26] Fahad S, Hussain S, Matloob A, et al. Phytohormones and plant responses to salinity stress: a review. Plant Growth Regulation, 2014, 75(2):391-404.
[27] 张丽, 牛雪飞, 郭栋, 等. 盐胁迫下草麻黄电阻抗图谱参数的变化及离子平衡机制. 核农学报, 2019, 33(6):1208-1216.
doi: 10.11869/j.issn.100-8551.2019.06.1208
[28] 刘本帅, 于立河, 于崧, 等. 中性盐和碱性盐胁迫对芸豆可溶性糖及钾钠离子含量的影响. 黑龙江八一农垦大学学报, 2022, 34(1):13-17.
[1] Li Chunhua, Wu Han, Jiayangduola , Wang Chunlong, Wang Yanqing, Ren Changzhong. Effects of Sowing Date on Agronomic Traits and Yield of Common Buckwheat Varieties (Lines) [J]. Crops, 2024, 40(4): 216-222.
[2] Song Quanhao, Cao Yanwei, Jin Yan, Xiao Yonggui, Song Jiajing, Zhao Lishang, Chen Jie, Bai Dong, Zhu Tongquan. Comprehensive Evaluation of 50 Wheat Germplasm Resources Derived from ICARDA [J]. Crops, 2024, 40(4): 54-61.
[3] Yan Jinlong, Zhang Dongxu, Feng Liyun, Wu Zhiyuan, Li Yijuan, Zhang Junling. Identification of Disease Resistance-Related Genes of Wheat Cultivars (Lines) in Southeastern Shanxi by KASP Assays [J]. Crops, 2024, 40(4): 90-95.
[4] Li Han, Zhao Yuxue, Zhou Xiaoke, Li Yun, Guo Zhenqing, Wang Jian, Han Yucui, Lin Xiaohu. Effects of Simulated Seawater Stress on Wheat Germination [J]. Crops, 2024, 40(4): 96-102.
[5] Zhang Suyu, Yue Junqin, Li Xiangdong, Jin Haiyang, Ren Dechao, Yang Mingda, Shao Yunhui, Wang Hanfang, Fang Baoting, Zhang Deqi, Shi Yanhua, Qin Feng, Cheng Hongjian. Effects of Nitrogen Application on Photosynthetic Rate, Dry Matter Accumulation after Anthesis and Yield of Zhengmai 366 [J]. Crops, 2024, 40(3): 127-132.
[6] Sun Hui, Zhao Changping, Yue Jieru, Bai Xiucheng, Yang Jifang, Ye Zhijie, Zhang Fengting. Effects of Different Ecological Environments and Daily Temperature Difference on Fertility Alteration and Agronomic Traits in BS Type Photo-Thermal Sensitive Male Sterile Wheat Lines [J]. Crops, 2024, 40(3): 40-46.
[7] Sun Tong, Yang Yushuang, Ma Ruiqi, Zhu Yingjie, Chang Xuhong, Dong Zhiqiang, Zhao Guangcai. Effects of PASP-KT-NAA and Ethylene-Chlormequat-Potassium on the Lodging Resistance, Yield, and Quality of Wheat [J]. Crops, 2024, 40(2): 113-121.
[8] Xu Zheli, Zhu Weiqi, Wang Litao, Shi Feng, Wei Zhiying, Wang Lina, Qiu Hongwei, Zhang Xiaoying, Li Huili. Effects of Irrigation and Foliar Nitrogen Application on Yield, Quality and Photosynthetic Characteristics of Late Sowing Wheat [J]. Crops, 2024, 40(2): 139-147.
[9] Yang Enze, Xie Rui, Han Ping'an, Zhang Yonghu, Liu Jinchuan, Niu Suqing, Wen Rui, Wang Chunyong, Jin Xiaolei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits of 162 Tartary Buckwheat Resources in Inner Mongolia [J]. Crops, 2024, 40(2): 15-22.
[10] Zhang Jun, Cai Suyun, Xu Zihao, Hou Lei, He Runli, Yin Guifang, Wang Lihua, Wang Yanqing, Lu Wenjie, Sun Daowang. Cloning, Bioinformatics and Expression Analysis of FtERF Gene in Fagopyrum tataricum [J]. Crops, 2024, 40(2): 23-29.
[11] Zhao Guangcai. Analysis of Wheat Seedling Situation in Northern Winter Wheat Region and Suggestions for Spring Management Techniques [J]. Crops, 2024, 40(2): 255-260.
[12] Du Hanmei, Tan Lu, Chen Bo, Yu Qiuzhu, Wu Dandan, Wang Anhu. Comprehensive Evaluation of Cadmium Tolerance of Tartary Buckwheat at Seedling Stage [J]. Crops, 2024, 40(2): 40-53.
[13] Li Hongyan, Yao Xiaohua, Yao Youhua, Li Xin, Wu Kunlun. Advances in Genetic and Regulatory Mechanisms of Blue Grain Traits in Wheat Crops [J]. Crops, 2024, 40(2): 9-14.
[14] Luo Xiaoying, Fang Yanfei, Hu Dongping, Tang Jianghua, Xu Wenxiu, Wang Huaigang. Effects of Sowing Methods and Sowing Rates on Soil Water Use and Yield of Dryland Wheat in Arid Region [J]. Crops, 2024, 40(2): 97-104.
[15] Liu Hongjie, Ren Dechao, Ge Jun, Zhang Suyu, Lü Guohua, He Xun. Effects of Accumulated Temperature and Planting Density on Pre-Winter Growth of Wheat [J]. Crops, 2024, 40(1): 141-147.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!