Crops ›› 2024, Vol. 40 ›› Issue (2): 113-121.doi: 10.16035/j.issn.1001-7283.2024.02.014

Previous Articles     Next Articles

Effects of PASP-KT-NAA and Ethylene-Chlormequat-Potassium on the Lodging Resistance, Yield, and Quality of Wheat

Sun Tong(), Yang Yushuang, Ma Ruiqi, Zhu Yingjie, Chang Xuhong(), Dong Zhiqiang(), Zhao Guangcai   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2022-10-08 Revised:2022-11-15 Online:2024-04-15 Published:2024-04-15

Abstract:

To investigate the effects of PASP-KT-NAA and Ethylene-Chlormequat-Potassium on the quality, yield, and lodging resistance of wheat, field experiments were conducted in the experimental garden field of the Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, from 2017 to 2018. Using a split-area experimental design, with four varieties as the main area, and PASP-KT-NAA (PKN) and Ethylene- Chlormequat-Potassium (ECK) as the sub-areas for plant growth regulator spraying frequency and water as the subregional sub-area. Before overwintering, rising phase, and heading period, wheat was sprayed once each (represented by PKN1, ECK1, and CK1), twice each (represented by PKN2, ECK2, and CK2), and three times total (represented as PKN3 and ECK3 and CK3). The findings demonstrated that, in comparison to CK, the ECK2 and ECK3 treatments significantly reduced the basal internodes, increased the stalk diameter and breaking resistance of the last fourth and fifth nodes, and improved lodging resistance of plants. In contrast, the PKN treatment had no significant effect on wheat lodging resistance. Compared to CK, the yield of four wheat varieties treated with PKN increased by 1.00% to 9.87%; yields increased by 5.51% and 9.87%, respectively, with PKN2 and PKN3 treatments. The wheat yields under the PKN1, ECK1, and ECK2 treatments did not differ significantly from that of CK, however the wheat yield under the ECK3 treatment decreased by 6.51% in comparison to CK3. In contrast to CK, PKN treatment raised glutenin to gliadin ratio, decreased the gliadin content, and increased wheat sedimentation value; PKN3 was the best in this regard; ECK2 and ECK3 significantly decreased gliadin content and increased albumin, glutenin content, and the ratio of glutenin to gliadin. Except for the Lunxuan 103, the dough development time of the other three varieties increased significantly compared to CK. In conclusion, ECK2 treatment improved the lodging resistance of wheat, improved the nutritional quality of wheat, and had no significant effects on yield; PKN2 and PKN3 treatments had no significant effects on lodging resistance, but improved yield and grain nutritional quality significantly.

Key words: PASP-KT-NAA, Ethylene-Chlormequat-Potassium, Wheat, Yield, Lodging resistance, Quality

Table 1

Effects of PKN and ECK on the plant height, spike length, and internode length of the four wheat varieties cm"

处理
Treatment
株高
Plant
height
穗长
Spike
length
倒1节长
1st internode length
from bottom
倒2节长
2nd internode
length from bottom
倒3节长
3rd internode length
from bottom
倒4节长
4th internode
length from bottom
倒5节长
5th internode length
from bottom
品种Variety 中麦8号 82.0a 9.0a 25.34a 19.33a 12.14b 9.76b 4.56d
轮选103 71.7d 8.1b 20.08d 17.79b 10.68c 9.09c 6.00b
中麦86 80.4b 8.2b 21.37c 17.29b 15.45a 12.15a 6.52a
衡观35 73.4c 8.1b 22.36b 17.43b 11.89b 9.00c 5.59c
喷施次数
Spraying time
1 77.9a 8.3a 22.29a 17.91a 12.85a 10.33a 5.94a
2 76.5b 8.4a 22.16a 18.00a 12.51ab 9.76b 5.63b
3 76.2b 8.4a 22.41a 17.97a 12.27b 9.92b 5.43b
化控剂
Chemical
regulator
PKN 77.4a 8.3a 22.26a 18.31a 12.62a 10.27a 5.89a
ECK 75.5b 8.4a 22.42a 17.82a 12.23b 9.52b 5.04b
CK 77.7a 8.3a 22.18a 17.74a 12.78a 10.22a 6.06a

Table 2

Effects of PKN and ECK on the lodging resistance of the fifth and fourth internode from the bottom of four wheat varieties"

处理
Treatment
倒5节5th internode from the bottom 倒4节4th internode from the bottom
茎粗
Stem diameter
(mm)
抗折力
Breaking
resistance (N)
抗倒指数
Lodging
resistance index
茎粗
Stem diameter
(mm)
抗折力
Breaking
resistance (N)
抗倒指数
Lodging
resistance index
品种
Variety
中麦8号 3.66c 13.16a 0.43a 4.39c 5.53c 0.21b
轮选103 4.06a 9.68c 0.38c 4.60a 6.77b 0.30a
中麦86 3.71c 7.25d 0.24d 4.22d 4.29d 0.16c
衡观35 3.98b 10.94b 0.41b 4.52b 7.06a 0.30a
喷施次数
Spraying time
1 3.78b 9.96b 0.34b 4.31b 5.66b 0.22b
2 3.90a 10.46a 0.37a 4.50a 6.00a 0.25a
3 3.88a 10.36a 0.38a 4.49a 6.07a 0.26a
化控剂
Chemical
regulator
PKN 3.77b 10.17b 0.34b 4.30b 5.88b 0.22b
ECK 3.99a 10.68a 0.41a 4.67a 6.23a 0.28a
CK 3.79b 9.94b 0.34b 4.33b 5.62c 0.22b

Table 3

Effects of PKN and ECK on the yield and its components of the four wheat varieties"

品种
Variety
处理
Treatment
穗数
Ears number (×104/hm2)
穗粒数
Grains per spike
千粒重
1000-grain weight (g)
产量
Yield (kg/hm2)
中麦8号Zhongmai 8 PKN1 634.23b 41.71b 32.33bc 8294.00c
ECK1 628.18c 41.72b 32.35bc 8217.46cd
CK1 632.31bc 41.83b 31.94c 8234.36cd
PKN2 647.34a 43.05a 32.53bc 8823.69b
ECK2 622.43d 41.50b 32.90b 8298.37c
CK2 633.72bc 42.03b 32.78b 8425.15c
PKN3 647.47a 43.28a 34.47a 9361.18a
ECK3 621.17d 41.27b 31.20d 7905.31d
CK3 632.79bc 41.85b 32.99b 8525.72bc
轮选103 Lunxuan 103 PKN1 620.00b 39.58bc 36.00bc 8621.53bc
ECK1 619.85b 39.31bc 36.13bc 8504.57bc
CK1 621.86b 39.15bc 35.80c 8365.09c
PKN2 634.78a 41.76a 36.01bc 9297.32a
ECK2 610.67c 39.32bc 36.71b 8552.08bc
CK2 622.82b 39.98b 36.21bc 8721.21b
PKN3 633.62a 41.50a 38.22a 9203.59a
ECK3 609.34c 38.52d 33.87d 7719.98d
CK3 621.59b 38.96cd 36.14bc 8464.98bc
中麦86 Zhongmai 86 PKN1 625.54b 41.46bc 33.18c 8264.03bc
ECK1 619.06c 41.38bc 33.16c 8193.23bc
CK1 621.28bc 41.27bc 33.07c 8090.73bc
PKN2 637.55a 42.66a 33.52bc 8894.12a
ECK2 612.69d 40.62cd 34.11b 7936.98cd
CK2 621.76bc 41.39bc 33.76bc 8383.69b
PKN3 637.56a 41.93ab 35.35a 9169.99a
ECK3 612.05d 40.22d 32.16d 7675.75d
CK3 621.91bc 40.81cd 33.64bc 8220.74bc
衡观35 Hengguan 35 PKN1 579.47cd 39.60ab 35.99bc 7954.99b
ECK1 583.07b 39.83ab 36.19bc 8094.98b
CK1 581.25bc 39.55bc 36.63b 8116.89b
PKN2 587.57a 40.50a 36.16bc 8484.65a
ECK2 576.12ef 39.06c 36.55b 7968.50b
CK2 584.49ab 39.40bc 36.18bc 8116.87b
PKN3 586.30ab 40.23ab 38.13a 8809.18a
ECK3 577.45de 39.00c 35.50c 7792.72b
CK3 575.14f 39.23c 36.24b 8048.32b

Table 4

Effects of PKN and ECK on the kernel protein components of the four wheat varieties"

处理
Treatment
清蛋白
Albumin
(%)
球蛋白
Globulin
(%)
醇溶蛋白
Gliadin
(%)
谷蛋白
Glutenin
(%)
可溶性蛋白
Alb+GL
(%)
贮藏蛋白
Gli+Glu
(%)
蛋白质含量
Protein content
(%)
谷醇比
Glu/Gli
品种Variety 中麦8号 2.29b 1.29c 3.89ab 4.36b 3.59c 8.26b 13.21b 1.12c
轮选103 2.60a 1.25c 4.00a 3.43c 3.86b 7.44c 12.69c 0.85d
中麦86 2.60a 1.58a 3.77b 5.13a 4.18a 8.91a 14.07a 1.36a
衡观35 2.30b 1.46b 3.77b 4.43b 3.77b 8.21b 13.35b 1.17b
喷施次数
Spraying time
1 2.40a 1.39a 3.90a 4.30b 3.79a 8.20a 13.27a 1.10b
2 2.43a 1.41a 3.84a 4.34ab 3.84a 8.19a 13.25a 1.13a
3 2.53a 1.39a 3.84a 4.37a 3.92a 8.21a 13.47a 1.14a
化控剂
Chemical regulator
PKN 2.42b 1.40a 3.90a 4.31b 3.83ab 8.22a 13.26a 1.11b
ECK 2.53a 1.38a 3.76b 4.39a 3.92a 8.16a 13.43a 1.17a
CK 2.39b 1.41a 3.92a 4.31b 3.81b 8.23a 13.29a 1.10b

Table 5

Effects of PKN and ECK on the end-use quality of wheat flour of the four wheat varieties"

处理
Treatment
沉降值
Sedimentation
(mL)
湿面筋含量
Wet gluten
content (%)
吸水率
Water absorption
(%)
形成时间
Development
time (min)
稳定时间
Stable time
(min)
品种Variety 中麦8号 26.96b 33.29b 60.26c 3.80c 4.73c
轮选103 23.14d 31.85c 61.64b 2.88d 1.92d
中麦86 28.50a 35.22a 64.55a 7.53a 12.81a
衡观35 25.55c 33.67b 60.09c 4.12b 5.14b
喷施次数
Spraying time
1 26.13a 33.09b 61.52b 4.53a 6.13a
2 26.06a 33.30ab 61.71a 4.60a 6.15a
3 25.92a 34.12a 61.67a 4.61a 6.17a
化控剂
Chemical regulator
PKN 26.47a 32.93b 61.63ab 4.53b 6.12b
ECK 25.73b 34.04a 61.51b 4.62a 6.21a
CK 25.91b 33.55a 61.76a 4.59ab 6.12b
[1] 赵广才. 小麦优质高产栽培理论与技术. 北京: 中国农业科学技术出版社, 2018.
[2] 秦武发, 董永华, 张彩英, 等. 植物激素对小麦品质的影响. 河北农业大学学报, 1996(4):93-95.
[3] 雷振生, 徐立新, 吴政卿, 等. 水肥运筹和化学调控对强筋小麦品质的影响. 华北农学报, 2006, 21(4):71-74.
doi: 10.3321/j.issn:1000-7091.2006.04.018
[4] 文廷刚. 植物生长调节剂对小麦抗倒伏能力、产量和品质的影响及其生理机理. 南京: 南京农业大学, 2012.
[5] 戴忠民. 喷施6BA和ABA对冬小麦籽粒胚乳细胞增殖和淀粉积累的影响. 麦类作物学报, 2008, 28(3):484-489.
[6] 张军, 高浪浪, 张梅娟. 矮壮素对小麦幼苗生长和光合生理特性的影响. 商洛学院学报, 2019, 33(6):26-29.
[7] 蔡铁, 徐海成, 尹燕枰, 等. 外源IAA、GA3和ABA影响不同穗型小麦分蘖发生的机制. 作物学报, 2013, 39(10):1835-1842.
doi: 10.3724/SP.J.1006.2013.01835
[8] 罗宝杰, 许俊旭, 丁艳锋, 等. 内源CTK和IAA平衡对水稻分蘖芽休眠与萌发的影响. 作物学报, 2014, 40(9):1619-1628.
[9] 朱云集, 郭汝礼, 郭天财, 等. 两种穗型冬小麦品种分蘖成穗与内源激素之间关系的研究. 作物学报, 2002, 28(6):783-788.
[10] 魏育明, 郑有良. 内源激素与小麦抽穗期的相关研究. 西南农业学报, 1998(3):27.
[11] 周振兴, 郭文善, 严六零, 等. 生长素和脱落酸对小麦花后生长的调节效应. 江苏农学院学报, 1994(2):14-18.
[12] 彭静. 喷施组合型生长调节剂对不同品种冬小麦抗寒生理、产量及籽粒品质的影响. 杨凌: 西北农林科技大学, 2018.
[13] 王纪华, 王树安, 蒋钟怀. 小麦籽粒建成过程的光合特性及内源激素研究. 北京农业大学学报, 1992(增1):29-35.
[14] 文廷刚, 杜小凤, 王伟中, 等. 乙烯利和劲丰对小麦干物质积累与转运特征及产量的影响. 西南农业学报, 2016, 29(12):2817-2823.
[15] 刘凯. 脱落酸和乙烯对水稻与小麦籽粒灌浆的调控作用及其机理. 扬州: 扬州大学, 2008.
[16] 李芳. 小麦化控防倒技术的应用分析. 安徽农学通报, 2015, 21(13):41,115.
[17] 马瑞琦, 亓振, 常旭虹, 等. 化控剂对冬小麦植株性状及产量品质的调节效应. 作物杂志, 2018(1):133-140.
[18] 卢霖, 董志强, 董学瑞, 等. 乙矮合剂对不同密度夏玉米花粒期不同部位叶片衰老特性的影响. 作物学报, 2016, 42(4):561-573.
[19] 卢霖, 董志强, 董学瑞, 等. 乙矮合剂对不同密度夏玉米茎秆抗倒伏能力及产量的影响. 作物杂志, 2015(2):70-77.
[20] 雒景吾, 李宏海, 崔军涛, 等. 几种调节剂对小麦茎秆、产量及品质的影响. 西安文理学院学报(自然科学版), 2013, 16(3):22-25.
[21] 徐磊, 王大伟, 时荣盛, 等. 小麦基部节间茎秆密度与抗倒性关系的研究. 麦类作物学报, 2009, 29(4):673-679.
[22] 邵庆勤. 叶面喷施多效唑提高小麦抗倒伏能力的生理机理研究. 南京: 南京农业大学, 2017.
[23] 胡卫国, 张玉娥, 赵虹, 等. 小麦抗倒性评价方法的比较分析. 西北农业学报, 2018, 27(12):1780-1788.
[24] 胡卫国, 曹廷杰, 王西成, 等. 小麦品种抗倒伏能力定性定量研究. 华北农学报, 2018, 33(5):160-167.
doi: 10.7668/hbnxb.2018.05.022
[25] 董学会, 段留生, 孟繁林, 等. 30%已·乙水剂对玉米产量和茎秆质量的影响. 玉米科学, 2006(1):138-140.
[26] 郭明明. 氮肥与行距对不同筋型小麦产量和品质的调控效应. 扬州: 扬州大学, 2015.
[27] 亓振. 化学调控和肥料处理对小麦产量和品质的影响. 北京: 中国农业科学院, 2016.
[28] 华智锐, 李小玲. 矮壮素对小麦抗倒伏性能的诱导效应研究. 河北农业科学, 2017, 21(2):47-51,71.
[29] Shimizu-Sato S, Mori H. Control of outgrowth and dormancy in axillary buds. Plant Physiology, 2001, 127(4):1405-1413.
pmid: 11743082
[30] 陈传晓, 董志强, 高娇, 等. 聚糠萘水剂对不同积温带春玉米灌浆期光合性能的影响. 玉米科学, 2013, 21(3):66-70,75.
[31] Kariali E, Mohapatra P K. Hormonal regulation of tiller dynamics in differentially-tillering rice cultivars. Plant Growth Regulation, 2007, 53(3):215-223.
doi: 10.1007/s10725-007-9221-z
[32] 郭净净. 生境型和生理型小麦雄性不育的生理生化基础研究. 新乡: 河南师范大学, 2013.
[33] 马少康, 李克民, 常旭虹, 等. 不同化控处理对中麦8号产量和品质的影响. 农业科技通讯, 2015(12):82-85.
[34] 邵运辉, 张洁, 张清田, 等. 丰优素对小麦产量与品质的影响. 小麦研究, 2002(4):27-28.
[35] 周秋峰, 王建宾, 张果果, 等. 化学调控对小麦产量和品质的影响. 农业科技通讯, 2015(8):155-157.
[36] 段留生, 韩碧文, 何钟佩. 6-苄氨基嘌呤和乙烯利对小麦旗叶衰老的调控作用. 中国农业大学学报, 1998(增4):28-33.
[37] 韩惠芳, 杨文钰, 关华. 弱光生态环境下烯效唑干拌种对小麦蛋白质组分及加工品质的影响. 水土保持学报, 2005, 19(6):166-168,177.
[38] 马瑞琦. 追氮量对不同筋型小麦产量、品质及生理指标的影响. 太原: 山西农业大学, 2018.
[39] 杨东清. 细胞分裂素参与氮素调控小麦分蘖发育的作用机制及构建合理群体结构的化控途径. 泰安: 山东农业大学, 2016.
[1] Wang Han, Zheng Dechao, Tian Qinqin, Wu Xiaojing, Zhou Wenxin, Yi Zhenxie. Effects of Harvest Time on Yield and Cadmium Accumulation and Distribution Characteristics of Early Rice [J]. Crops, 2024, 40(2): 105-112.
[2] Sun Yueying, Liu Jinghui, Mi Junzhen, Zhao Baoping, Li Yinghao, Zhu Shanshan. Study on the Growth-Promoting Effect of Lactic Acid Bacteria Compound Preparation on Oat [J]. Crops, 2024, 40(2): 122-128.
[3] Xu Zheli, Zhu Weiqi, Wang Litao, Shi Feng, Wei Zhiying, Wang Lina, Qiu Hongwei, Zhang Xiaoying, Li Huili. Effects of Irrigation and Foliar Nitrogen Application on Yield, Quality and Photosynthetic Characteristics of Late Sowing Wheat [J]. Crops, 2024, 40(2): 139-147.
[4] Yang Enze, Xie Rui, Han Ping'an, Zhang Yonghu, Liu Jinchuan, Niu Suqing, Wen Rui, Wang Chunyong, Jin Xiaolei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits of 162 Tartary Buckwheat Resources in Inner Mongolia [J]. Crops, 2024, 40(2): 15-22.
[5] Li Sijun, Bi Yiming, Hou Jianlin, Wu Wenxin, Deng Xiaoqiang, Jiang Zhimin, Tian Yunong, Hao Xianwei, Zhang Cheng, Zhu Lin, Xia Bin, Deng Xiaohua. Study on the Flue-Curing Processes in the Intensive Curing House Suitable for the Harvesting at One Time of Six Middle Leaves of Paddy-Tobacco [J]. Crops, 2024, 40(2): 158-164.
[6] Xie Jin, Li Jincheng, Liang Zengfa, Huang Hao, Zhang Xi, Gao Renji, Jin Baofeng, Zeng Fandong, Lu Zhiwei, Cai Yixia, Wang Wei. Effects of Ridging Height and Ratio of Organic Fertilizer on Root Growth and Quality of Upper Tobacco Leaves [J]. Crops, 2024, 40(2): 165-171.
[7] Xiao Min, Guo Lang, Cui Can, Cheng Zhouqi, Liu Yuwu, Zhuo Le, Wu Si, Yi Zhenxie. Effects of Phosphate Fertilizer Management on Yield Components and Nutrient Uptake and Utilization in Mechanical Transplanting Double-Cropping Rice [J]. Crops, 2024, 40(2): 178-188.
[8] Xie Mengfan, Jia Haijiang, Qu Yuankai, Nong Shiying, Li Junlin, Wang Jie, Liu Liwei, Yan Huifeng. Effects of Planting Density and Nitrogen Fertilizer Application Rate on Leaf Development and Yield of Flue-Cured Tobacco in Baise Tobacco Region [J]. Crops, 2024, 40(2): 189-197.
[9] Wang Huaiping, Yang Mingda, Zhang Suyu, Li Shuai, Guan Xiaokang, Wang Tongchao. Effects of Different Water-Saving Irrigation Modes on Growth, Yield, and Water Utilization of Summer Maize [J]. Crops, 2024, 40(2): 206-212.
[10] Chen Lin, Yao Xiaohua, Yao Youhua, Bai Yixiong, Wu Kunlun. Diversity Analysis of Grain Appearance and Quality Traits of Hulless Barley Varieties on the Qinghai-Tibet Plateau [J]. Crops, 2024, 40(2): 213-220.
[11] Zhang Lei, Dong Kongjun, He Jihong, Ren Ruiyu, Liu Tianpeng, Yang Tianyu. Study on the Difference of Nitrogen and Phosphorus Uptake of Different Genotypes of Proso Millet (Panicum miliaceum L.) Varieties [J]. Crops, 2024, 40(2): 228-233.
[12] Zhang Jun, Cai Suyun, Xu Zihao, Hou Lei, He Runli, Yin Guifang, Wang Lihua, Wang Yanqing, Lu Wenjie, Sun Daowang. Cloning, Bioinformatics and Expression Analysis of FtERF Gene in Fagopyrum tataricum [J]. Crops, 2024, 40(2): 23-29.
[13] Zhao Guangcai. Analysis of Wheat Seedling Situation in Northern Winter Wheat Region and Suggestions for Spring Management Techniques [J]. Crops, 2024, 40(2): 255-260.
[14] Du Hanmei, Tan Lu, Chen Bo, Yu Qiuzhu, Wu Dandan, Wang Anhu. Comprehensive Evaluation of Cadmium Tolerance of Tartary Buckwheat at Seedling Stage [J]. Crops, 2024, 40(2): 40-53.
[15] Liu Fanchao, Fang Shumei, Wang Qingyan, Wang Hanxin, Niu Juanjuan, Liang Xilong. Effects of Different Concentrations of Exogenous Amino Acids on Growth and Related Physiological Indicators of Rice Seedlings [J]. Crops, 2024, 40(2): 71-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!