Crops ›› 2024, Vol. 40 ›› Issue (5): 167-174.doi: 10.16035/j.issn.1001-7283.2024.05.024

Previous Articles     Next Articles

Soil Quality Evaluation and Its Correlation with Tobacco Leaf Quality under Different Previous Crops

Li Xinru1(), Xie Yanfen2, Zhu Xuanquan1, Wang Ge1, Bai Yuxiang1, Du Yu1, Zhou Peng1, Zhao Yuting2, Zhu Hongqiong2, Yang Fan2, Xiao Zhiwen3, Wang Wenbo2, Fang Zhipeng2, Han Jiabao2(), Wang Na1()   

  1. 1Tobacco College, Yunnan Agricultural University, Kunming 650201, Yunnan, China
    2Luliang Branch of Qujing Tobacco Company, Qujing 655699, Yunnan, China
    3Yimen Branch of Yuxi Tobacco Company, Yuxi 653199, Yunnan, China
  • Received:2023-05-16 Revised:2023-09-14 Online:2024-10-15 Published:2024-10-16

Abstract:

In 2021, selecting 31 tobacco-planting plots distributed in seven tobacco-planting townships in Luliang County, Yunnan province, surface sampling and fuzzy mathematical membership function model were used to compare the differences in physical and chemical properties of tobacco-planting soil with different previous cropping, preliminatively evaluate the soil fertility quality, and the correlation between soil fertility and tobacco leaf quality was established. The results showed that the contents of total nitrogen, available potassium, organic matter, total potassium and cationic exchange capacity of the soil with green fertilizer as the previous crop were the highest, and the content of chlorine in the soil with potato as the previous crop was higher. The scores of the comprehensive evaluation of soil fertility of each treatment were 0.589 to 0.763, with green fertilizer as the previous crop scoring the highest, followed by corn, uncultivated and potato. The factors that had the highest influence on soil fertility were chloride ion and available phosphorus content. Structural equation model and correlation analysis showed that the previous crop changed soil fertility by directly affecting soil physicochemical properties, further affecting tobacco chemical properties, and finally affecting tobacco quality.

Key words: Flue-cured tobacco, Previous crop, Soil fertility quality evaluation, Fuzzy mathematical membership function model, Structural equation model

Table 1

Model number of each previous crop and the number of sampled plots"

前茬作物
Previous crop
处理
Treatment
取样地块数量
Number of plots sampled
撂荒Uncultivated T1 5
绿肥Green manure T2 6
马铃薯Potato T3 5
玉米Corn T4 15

Table 2

Weight of each evaluation index, its membership function and the value of function turning point"

指标
Index
函数类型
Function
type
拐点值
Turning point value
x1 x2 x3 x4
pH A 4.5 5.5 6.5 8.0
有机质Organic matter (g/kg) A 10 15 30 45
水解性氮
Alkali-hydrolyzable N (mg/kg)
A
30
60
120
150
全氮Total N (%) A 0.07 0.10 0.15 0.20
水溶性Cl-
Water-soluble Cl- (mg/kg)
A
2
5
25
45
黏粒含量Clay particle (%) A 20 40 60 80
有效磷Available P (mg/kg) B 10 40
速效钾Available K (mg/kg) B 50 150
全磷Total P (%) B 0.06 0.10
全钾Total K (%) B 1.5 2.5
CEC (cmol/kg) B 10 20

Fig.1

Effects of previous crops on soil chemical properties Different lowercase letters indicate significant difference (P < 0.05), the same below."

Table 3

Effects of previous crops on soil physical properties"

处理
Treatment
比重
Specific gravity
R0.25 机械组成Mechanical composition (%)
砂粒
Sand grain (0.021~2.000 mm)
粉砂粒
Silt grain (0.002~0.020 mm)
黏粒
Clay particle (≤0.002 mm)
T1 2.60±0.04b 20.54±9.58b 40.06±8.56ab 35.56±6.75a 24.42±3.15b
T2 2.67±0.04a 45.22±3.51a 38.12±9.86ab 22.35±3.48b 39.57±11.91a
T3 2.62±0.04ab 27.48±13.49b 53.44±13.64a 20.76±7.22b 25.80±7.48b
T4 2.59±0.04b 29.49±12.00b 36.13±13.20b 27.54±8.28ab 36.34±10.04ab

Table 4

IFI of different previous crops"

指标
Index
T1 T2 T3 T4
IFI 0.638±0.134ab 0.763±0.158a 0.589±0.164b 0.626±0.120ab

Table 5

Weight of each fertility index"

指标
Index
pH 有机质
Organic matter
水解性氮
Hydrolyzed N
全氮
Total N
水溶性Cl-
Water-soluble Cl-
黏粒含量
Clay particle content
有效磷
Available P
速效钾
Available K
全磷
Total P
全钾
Total K
CEC
权重Weight 0.03 0.06 0.05 0.05 0.29 0.06 0.17 0.09 0.06 0.09 0.05

Table 6

Membership value of each treatment fertility index"

指标
Index
pH 有机质
Organic matter
水解性氮
Hydrolyzed N
全氮
Total N
水溶性Cl-
Water-soluble Cl-
黏粒含量
Clay particle
有效磷
Available P
速效钾
Available K
全磷
Total P
全钾
Total K
CEC
T1 0.69ab 1.00a 0.82a 0.97a 0.46a 0.30b 0.94a 0.91a 0.66b 0.32b 0.11b
T2 0.94a 0.92a 0.84a 0.82a 0.55a 0.72a 0.88a 1.00a 0.99a 0.78a 0.51a
T3 0.40b 0.87a 1.00a 0.77a 0.41a 0.40ab 0.93a 0.95a 0.52ab 0.14b 0.11b
T4 0.80a 0.79a 0.78a 0.77a 0.47a 0.72a 0.77a 0.98a 0.79ab 0.19b 0.28b

Table 7

Effects of each previous crop on chemical properties of tobacco leaves"

处理
Treatment
品种
Variety
总糖
Total sugar
(%)
还原糖
Reducing
sugar (%)
总氮
Total nitrogen
(%)
总植物碱
Total alkaloid
(%)

K (%)

Cl (%)
糖碱比
Sugar-alkali
ratio
氮碱比
Nitrogen-
alkali ratio
钾氯比
Potassium-
chloride ratio
T1 红花大金元 39.90±2.42a 27.36±2.35a 1.83±0.18a 1.47±0.17b 2.55±0.18ab 0.73±0.32a 19.63±2.76a 1.26±0.06a 6.64±2.08b
云烟100
T2 云烟100 26.57±0.98b 18.92±1.42b 2.24±0.08a 2.94±0.17a 2.16±0.28b 0.15±0.04b 6.67±0.81b 0.78±0.08b 22.73±6.80a
云烟87
T3 红花大金元 29.94±4.69ab 20.06±2.94ab 2.00±0.12a 1.68±0.40b 3.10±0.36a 0.73±0.08a 14.36±3.50ab 1.34±0.18a 4.42±0.70b
云烟100
T4 红花大金元 35.45±2.05ab 23.98±1.57ab 1.92±0.09a 1.80±0.14b 2.15±0.17b 0.60±0.16a 15.06±1.80ab 1.12±0.07ab 11.50±3.16ab
云烟100
云烟87
方差
Variance

前茬 (df=3) 3.104* 2.595 1.662 8.584** 1.775 1.173 3.994* 4.798* 2.537
品种 (df=2) 1.934 0.974 0.671 0.231 1.220 0.046 0.544 0.403 0.613
前茬×品种 (df=6) 0.427 0.324 1.820 2.995 0.110 1.017 0.972 1.879 0.328

Table 8

The tobacco leaves scores under each previous crop"

处理
Treatment
还原糖
Reducing
sugar
总氮
Total
nitrogen
总植物碱
Total alkaloid

K
淀粉
Starch
糖碱比
Sugar-alkali
ratio
氮碱比
Nitrogen-
alkali ratio
钾氯比
Potassium-
chloride ratio
总分
Total score
T1 56.92±39.49b 73.08±16.51c 45.04±33.08ab 96.82±4.37a 73.26±13.94c 11.69±57.93b 80.12±16.51a 71.38±36.60a 53.24±23.41b
T2 93.46±5.67a 100.00±0.00a 75.35±27.30a 90.27±10.67a 98.56±2.17a 78.99±22.66a 82.30±18.31a 98.99±1.27a 86.72±11.75a
T3 82.61±21.72ab 89.91±9.64ab 34.39±22.12b 98.75±2.80a 89.51±8.70ab 38.26±42.40ab 50.98±46.41a 65.07±19.98a 60.70±18.69ab
T4 71.61±30.08ab 79.77±14.71bc 65.46±33.29ab 90.41±9.95a 81.09±12.96bc 43.08±52.54ab 82.80±30.51a 70.33±35.28a 67.45±25.94ab

Fig.2

Pearson correlation analysis between soil physicochemical properties and tobacco chemical constituents P > 0.05 without marking; 0.01 < P < 0.05 marks *; 0.001 < P < 0.01 marks **; P < 0.001 marks ***."

Fig.3

The path map of structural equation model was used to simulate soil physicochemical properties and tobacco quality of previous crops The value of the box on the arrow is the path coefficient (correlation coefficient) between different features.“*”and“**”respectively indicate the significant difference at the level of 0.05 and 0.01, and if there is no significant difference, it is not significant; TN is total nitrogen, TVA is total vegetative base, S:N is the ratio of sugar to nitrogen, N:A is the ratio of nitrogen to base, AK is the available potassium, TP is the total phosphorus, TK is the total potassium, WSA is water stable macroaggregates, and TWSA is the total water stable aggregates."

[1] 王怀嵩, 张涛. 农业土壤健康评价体系研究进展. 生态与农村环境学报, 2022, 38(9):1093-1100.
[2] 梁文举, 董元华, 李英滨, 等. 土壤健康的生物学表征与调控. 应用生态学报, 2021, 32(2):719-728.
doi: 10.13287/j.1001-9332.202102.041
[3] 黄容, 王永豪, 王昌全, 等. 凉攀区植烟土壤酚酸类物质的含量分布和变异特征. 土壤, 2021, 53(4):794-801.
[4] 刘浩, 周冀衡, 张毅, 等. 不同土壤类型前茬作物对烤烟化学成分和品质的影响. 湖南农业大学学报(自然科学版), 2015, 41(5):491-495.
[5] 禚其翠, 宋文静, 董建新, 等. 不同前作对烟田土壤养分、酶活性及烤烟生长的影响. 中国烟草科学, 2018, 39(1):64-71.
[6] 籍晟煜, 张强, 靳东升, 等. 种植玉米对矿区复垦土壤团聚体稳定性及有机碳分布的影响. 山西农业科学, 2020, 48(2):228-232.
[7] 张淑珂, 孙国新, 姜杰. 白城市黑土区农田土壤重金属来源解析及积累评价. 环境科学学报, 2023, 43(5):409-420.
[8] 李鑫, 张文菊, 邬磊, 等. 土壤质量评价指标体系的构建及评价方法. 中国农业科学, 2021, 54(14):3043-3056.
doi: 10.3864/j.issn.0578-1752.2021.14.010
[9] 裴忠雪, 武燕, 王琼, 等. 松嫩平原土壤孔隙指标与其他土壤指标的相关关系. 水土保持研究, 2016, 23(2):134-138.
[10] 李先才, 张晓龙, 潘义宏, 等. 不同比例缓释肥、烟草专用复合肥配施对植烟土壤肥力及烤烟产质量的影响. 中国农学通报, 2021, 37(36):47-53.
doi: 10.11924/j.issn.1000-6850.casb2021-0066
[11] 鲍士旦. 土壤农化分析. 第3版. 北京: 中国农业出版社, 2000.
[12] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
[13] Elliott E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Science Society of America Journal, 1986, 50(3):627-633.
[14] 张振平. 洛南县烟叶氯含量问题商榷. 西北农林科技大学学报(自然科学版), 2002, 30(4):33-36.
[15] 张翔, 范艺宽, 黄元炯, 等. 河南省烟区灌溉水全盐量和氯含量状况. 灌溉排水学报, 2003, 22(4):71-72.
[16] Sifola M I, Postigline L. The effect of increasing NaCl in irrigation water on growth, gas exchange and yield of tobacco Burley type. Field Crops Research, 2002, 74(1):81-91.
[17] 王子芳, 高明, 魏朝富, 等. 植烟土壤养分的空间变异特征及适宜性评价——以重庆市彭水县为例. 西南大学学报(自然科学版), 2008, 157(1):98-103.
[18] 陈海生, 叶协峰, 刘国顺, 等. 基于GIS的河南省烤烟土壤肥力适宜性研究. 土壤通报, 2007, 231(6):1081-1085.
[19] 胡月明, 吴谷丰, 江华, 等. 基于GIS与灰关联综合评价模型的土壤质量评价. 西北农林科技大学学报(自然科学版), 2001, 29(4):39-42.
[20] 贾孟, 贾利华, 付伟涛, 等. 不同井窖深度对土壤温湿度及烤烟产质量的影响. 南方农业学报, 2019, 50(10):2141-2148.
[21] 王彦亭, 谢剑平, 李志宏. 中国烟草种植区划. 北京: 科学出版社, 2010.
[22] 谢晋, 严玛丽, 陈建军, 等. 不同铵态氮硝态氮配比对烤烟产量、质量及其主要化学成分的影响. 植物营养与肥料学报, 2014, 20(4):1030-1037.
[23] 曾茹冰, 黄渐佳, 魏玉杰, 等. 耕地撂荒对土壤结构及有机碳的影响. 中国水土保持科学, 2020, 18(5):26-34.
[24] 蔺芳, 刘晓静, 童长春, 等. 基于产量效应的间作紫花苜蓿/禾本科牧草光能利用特征. 应用生态学报, 2020, 31(9):2963-2976.
doi: 10.13287/j.1001-9332.202009.026
[25] 易兴松, 戴全厚, 严友进, 等. 西南喀斯特地区耕地撂荒生态环境效应研究进展. 生态学报, 2023, 43(3):925-936.
[26] Tisdall J M, McKenzie B M. A method of extracting earthworms from cores of soil with minimum damage to the soil. Biology and Fertility of Soils, 1999, 30(1/2):96-99.
[27] 崔芯蕊, 张嘉良, 王云琦, 等. 甘肃小陇山林区不同林分对土壤团聚体稳定性的影响. 水土保持学报, 2021, 35(4):275-281.
[28] 焦敬华, 刘春奎, 许自成, 等. 湖北宣恩不同海拔植烟土壤养分含量状况分析与综合评价. 安徽农业科学, 2007, 35(28):8936-8937,8949.
[29] 徐艳丽, 段焰, 刘芮, 等. 西南典型烟区水稳性团聚体组成对土壤理化特征的影响. 中国烟草科学, 2020, 41(6):51-57.
[30] 张钦, 于恩江, 林海波, 等. 连续种植不同绿肥作物耕层的土壤团聚体特征. 西南农业学报, 2019, 32(1):148-153.
[31] 张钦, 于恩江, 林海波, 等. 连续种植不同绿肥作物的土壤团聚体空间分布及稳定性特征. 热带作物学报, 2018, 39(9):1708-1717.
[32] 刘雪强, 南丽丽, 郭全恩, 等. 黄土高原半干旱区种植不同绿肥作物对土壤理化性质的影响. 甘肃农业大学学报, 2020, 55(1):145-152.
[33] 李忠环, 韩智强, 高福宏, 等. 不同前茬对烤烟根际土壤微生物的影响. 中国农学通报, 2011, 27(22):114-118.
[34] 卢红霞. 氯(Cl-)对马铃薯的某些生理效应及对土壤中氮肥行为的影响. 杭州:浙江大学, 2001.
[35] 王婷, 李永梅, 王自林, 等. 间作对玉米根系分泌物及团聚体稳定性的影响. 水土保持学报, 2018, 32(3):185-190.
[36] 程伟威, 王婷, 范茂攀, 等. 玉米不同种植模式对坡耕地红壤团聚体的影响. 湖北农业科学, 2019, 58(15):33-38.
[37] 肖金讯, 王子一, 李信, 等. 不同烟田复种模式的经济效益比较研究. 作物研究, 2022, 36(5):488-493.
[38] 吴岳庭, 李海平, 丁梦娇, 等. 玉米秸秆还田方式对酸性植烟土壤肥力及烟叶产值的影响. 西南农业学报, 2021, 34(2):320-325.
[39] 朱经伟, 石俊雄, 冉贤传, 等. 玉米秸秆施用措施对土壤肥力及烤烟产质量的影响. 烟草科技, 2016, 49(11):14-20.
[1] Li Sijun, Bi Yiming, Hou Jianlin, Wu Wenxin, Deng Xiaoqiang, Jiang Zhimin, Tian Yunong, Hao Xianwei, Zhang Cheng, Zhu Lin, Xia Bin, Deng Xiaohua. Study on the Flue-Curing Processes in the Intensive Curing House Suitable for the Harvesting at One Time of Six Middle Leaves of Paddy-Tobacco [J]. Crops, 2024, 40(2): 158-164.
[2] Duan Junya, Zhao Yuanyuan, Wei Jianyu, Wang Dexun, Wang Zheng, Wang Tingting, Shi Hongzhi. Effects of Foliar Spraying Polyaspartic Acid on Growth, Yield and Quality of Flue-Cured Tobacco [J]. Crops, 2023, 39(6): 195-201.
[3] Liu Chen, Yang Mingfeng, Yang Long, Zhang Nan, Yu Tao. Effects of Wide-Narrow Row Configuration in Double-Row Concave Ridge on Growth and Quality of Upper Leaves of Flue-Cured Tobacco [J]. Crops, 2023, 39(5): 151-156.
[4] Liu Xiaomin, Xu Rui, Sun Jingguo, Zhao Fanchong, Si Zhenxing, Liang Zhizhe, Xu Zicheng, Han Dan. The Effects of Well Cellar Depth and Mulching Methods on the Gas- Thermal Environment and Flue-Cured Tobacco Growth and Yield [J]. Crops, 2023, 39(5): 157-163.
[5] Duan Junya, Zhao Yuanyuan, Peng Zhiliang, Zhang Yongfeng, Duan Weidong, Yang Qingxi, Wang Songling, Chen Xiaolong, Shi Hongzhi. Effects of Once-Over Harvesting Period on the Qualities of Upper Leaves of Flue-Cured Tobacco in Southern Shaanxi [J]. Crops, 2023, 39(5): 231-237.
[6] Jia Guotao, Wang Xiaoyu, Sun Yiming, Nie Cong, He Jingyu, Feng Yingjie, Ma Shengtao, Cui Ting, Cheng Dongxu, Yao Qian, Li Yue, Zhang Ziying, Wang Baolin, Liu Huimin. Analysis on the Relationship between Contents of Free Amino Acids and the Quality of Flue-Cured Tobacco in Eight Flavor Ecological Regions of China [J]. Crops, 2023, 39(3): 195-199.
[7] Shan Jiaye, Zhang Xuewei, Yan Min, Yang Jian, Wang Fei, He Jixian, Hu Gang, Wang Yuchen, Jing Yanqiu, Lei Qiang. Effects of Spraying Rare Earth Micro-Fertilizer on Growth and Physiological Characteristics of Flue-Cured Tobacco under Drought Stress [J]. Crops, 2023, 39(2): 100-105.
[8] Han Yuhuan, Liu Chen, Yang Long, Yu Tao. Effects of Topping Period and Number of Remained Leaves on Growth and Development of Upper Leaves of Flue-Cured Tobacco in Shandong Province [J]. Crops, 2023, 39(2): 157-162.
[9] Wang Yuehua, Zhou Junxue, Ma Yilin, Ma Junhong, Wang Yanfang, Zhao Shimin, Shen Hongtao, Li Youjun, Liu Ling. Effects of Different Harvest Maturity of Upper Six Leaves on Physiological Metabolism and Quality of Flue-Cured Tobacco Line LY1306 [J]. Crops, 2023, 39(2): 171-177.
[10] Zhang Yifei, Zu Qingxue, Nie Zhongyang, Lin Song, Rao Chen, Cheng Zhijun. Research on Contribution of Glutamic Acid to Nitrogen Nutrition and Physiological Characteristics of Flue-Cured Tobacco [J]. Crops, 2023, 39(2): 186-192.
[11] Wang Dequan, Liu Yang, Liu Jiang, Chen Keling, Wang Yi, Du Chuanyin, Du Yuhai, Ma Xinghua. Research Progress of Furrow and Ridge Rain-Harvesting Farming Technology and its Application Prospects in Flue-Cured Tobacco Production [J]. Crops, 2023, 39(1): 1-5.
[12] Chen Dong, Zou Jing, Guo Ganggang, Dai Wendian, Song Shaoguang, Huang Ying. Effects of Different Specifications of Seedling Trays on Quality and Main Physiological Characteristics of Tobacco Seedlings [J]. Crops, 2023, 39(1): 129-135.
[13] Zhang Yonggang, Ren Zhiguang, Xu Zhiqiang, Liu Jianguo, Zhang Xiaobing, Liu Huabing, Xia Chen, Cheng Changhe. Chemical Quality Evaluation of Flue-Cured Tobacco Based on Maximization of Deviation and BP Neural Network [J]. Crops, 2023, 39(1): 190-195.
[14] Li Diqin, Yao Shaoyun, Wang Qing, Yi Ke, Liu Yiyun, Tang Xiaoming, Peng Yuanyuan, Fu Changwu. Effects of Different Nitrogen Sources on the Growth and Development of Tobacco Seedlings [J]. Crops, 2023, 39(1): 201-206.
[15] Wang Yuan, Wang Jiming, Nian Fuzhao, Zheng Yuanxian, Xu Yinlian, Li Cuifen, Cui Yongquan, Zhang Qifu, Zhao Leifeng, Liao Xiaolin, He Yuansheng. Effects of Continuous Cropping with Rice Hull Biochar on Soil Physical and Chemical Properties and Growth of Flue-Cured Tobacco [J]. Crops, 2023, 39(1): 219-225.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!