Crops ›› 2023, Vol. 39 ›› Issue (2): 186-192.doi: 10.16035/j.issn.1001-7283.2023.02.027

Previous Articles     Next Articles

Research on Contribution of Glutamic Acid to Nitrogen Nutrition and Physiological Characteristics of Flue-Cured Tobacco

Zhang Yifei1(), Zu Qingxue1, Nie Zhongyang1, Lin Song1, Rao Chen1, Cheng Zhijun2   

  1. 1Kaiyang Branch of Guizhou Tobacco Company, Kaiyang 550300, Guizhou, China
    2China Tobacco Hunan Industrial Co., Ltd., Changsha 410000, Hunan, China
  • Received:2021-11-30 Revised:2022-01-10 Online:2023-04-15 Published:2023-04-11

Abstract:

In order to explore the effects of amino acid nitrogen on the growth and development of flue-cured tobacco and the contribution of nitrogen nutrition, using Nanjiang No.3 as the material, L-glutamic acid as the organic nitrogen source, 15NH415NO3 as the inorganic nitrogen source, five treatments with different nitrogen source ratios were set up: no nitrogen application (CK), 100% inorganic nitrogen (T1), 25% glutamate nitrogen + 75% inorganic nitrogen (T2), 50% glutamate nitrogen + 50% inorganic nitrogen (T3), 75% glutamate nitrogen + 25% inorganic nitrogen (T4), 100% glutamate nitrogen (T5), and the tobacco plant biomass, nitrogen content and related enzyme activities were measured. The results showed that, the application of glutamic acid had a certain inhibitory effects on the biomass and nitrogen content of tobacco plants in the early growth period, and the most obvious inhibitory effects was at the rosette stage. In the later growth period, 25%-50% of amino acids could promote the growth of tobacco plants. With the increased of the proportion of glutamate, the proportion of total nitrogen content in the upper and middle tobacco leaves increased with different degrees, while the proportion of total nitrogen in the lower tobacco leaves gradually decreased from 16.77% to 8.03%, the application of glutamate was conducive to the accumulation of nitrogen content in the middle and upper leaves of the tobacco plant. The activities of GPT and GDH of plant roots, stems and leaves showed an increasing trend with the increase of the proportion of glutamate. It showed that, flue-cured tobacco could directly absorb and utilize glutamate molecules. The combination of low-concentration glutamate and inorganic nitrogen could promote the growth of tobacco plants and regulate the distribution of nitrogen in tobacco plants. However, high concentrations of glutamate inhibited the growth of tobacco plants.

Key words: Flue-cured tobacco, Glutamic acid, 15N, Growth, Nitrogen contribution

Fig.1

Effects of different treatments on the biomass of roots, stems and leaves of tobacco plants at different growth stages Different lowercase letters indicate significant differences among treatments (P < 0.05), the same below"

Fig.2

Nitrogen content in roots, stems and leaves of tobacco plants at different growth stages of each treatment"

Table 1

"

处理Treatment 上部叶Upper leaf 中部叶Middle leaf 下部叶Lower leaf 茎Stem 根Root 15N总量Total 15N
CK
T1 0.48±0.04b 0.64±0.03a 0.32±0.02a 0.76±0.06a 0.33±0.03a 2.53±0.15a
T2 0.45±0.04b 0.55±0.06b 0.34±0.02a 0.55±0.03b 0.23±0.02b 2.12±0.16c
T3 0.57±0.05a 0.70±0.04a 0.22±0.02b 0.49±0.07b 0.25±0.02b 2.23±0.12b
T4 0.17±0.03c 0.22±0.02c 0.09±0.00c 0.19±0.03c 0.11±0.02c 0.78±0.08d
T5

Fig.3

Proportion of 15N in each part of tobacco plants with different treatments"

Fig.4

Effects of different treatments on nitrogen absorption in various parts of tobacco plants"

Fig.5

Effects of different treatments on the activity of GPT in leaf, stem and root of tobacco plants"

Fig.6

Effects of different treatments on the activity of GDH in leaf, stem and root of tobacco plants"

[1] 陈仕友, 王祎, 白彦锋, 等. 土壤可溶性有机氮研究进展. 生态科学, 2020, 39(5):233-239.
[2] 朱兆良, 邢光熹. 氮循环:攸关农业生产、环境保护与人类健康. 北京: 清华大学出版社, 2010.
[3] 朱兆良, 文启孝. 中国土壤氮素. 南京: 江苏科学技术出版社,1992.
[4] 马庆旭, 朱双双, 泮莞坤, 等. 土壤氨基酸生物有效性及其环境调控研究进展. 植物营养与肥料学报, 2020, 26(10):1899-1908.
[5] 徐兴良, 白洁冰, 欧阳华. 植物吸收土壤有机氮的研究进展. 自然资源学报, 2011, 26(4):715-724.
[6] Li F, Dong C X, Yang T Y, et al. The tea plant CsLHT1 and CsLHT 6 transporters take up amino acids,as a nitrogen source,from the soil of organic tea plantations. Horticulture Research, 2021, 8(1):178.
doi: 10.1038/s41438-021-00615-x
[7] Yang G Z, Wei Q X, Huang H, et al. Amino acid transporters in plant cells:a brief review. Plants, 2020, 9(8):967-974.
doi: 10.3390/plants9080967
[8] 王莹, 史振声, 王志斌, 等. 植物对氨基酸的吸收利用及氨基酸在农业中的应用. 中国土壤与肥料, 2008(1):6-11.
[9] 曹小闯, 李晓艳, 朱练峰, 等. 外源甘氨酸态氮、硝态氮和铵态氮的浓度配比对小白菜生长和品质的影响. 农业环境科学学报, 2015, 34(10):1846-1852.
[10] 岳李心, 莫良玉, 范稚莲, 等. 氨基酸态氮对水稻幼苗的效应研究. 南方农业学报, 2010, 41(3):240-243.
[11] Chapin F S, Moilanen L, Kielland D K. Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature, 1993, 361(6408):150-153.
doi: 10.1038/361150a0
[12] 张志良, 瞿伟菁, 李小方. 植物生理学实验指导. 北京: 高等教育出版社, 2009.
[13] 吴良欢, 蒋式洪, 陶勤南. 植物转氨酶(GOT和GPT)活度比色测定方法及其应用. 土壤通报, 1998, 29(3):41-43.
[14] Cren M, Hirel B. Glutamine synthetase in higher plants regulation of gene and protein expression from the organ to the cell. Plant and Cell Physiology, 1999, 40(12):1187-1194.
doi: 10.1093/oxfordjournals.pcp.a029506
[15] Moran-Zuloaga D, Dippold M, Glaser B, et al. Organic nitrogen uptake by plants:reevaluation by position-specific labeling of amino acids. Biogeochemistry, 2015, 125(3):359-374.
doi: 10.1007/s10533-015-0130-3
[16] 宋奇超, 曹凤秋, 巩元勇, 等. 高等植物氨基酸吸收与转运及生物学功能的研究进展. 植物营养与肥料学报, 2012, 18(6):1507-1517.
[17] Kim T H, Kim E C, Kim S W, et al. Exogenous glutamate inhibits the root growth and increases the glutamine content in Arabidopsis thaliana. Journal of Plant Biology, 2010, 53(1):45-51.
doi: 10.1007/s12374-009-9084-0
[18] 王峻, 马庆旭, 刘梦娇, 等. 不同氨基酸以及赖氨酸与硝态氮不同配比对白菜生长和品质的影响. 植物营养与肥料学报, 2020, 26(3):587-593.
[19] Näsholm T, Kielland K, Ganeteg U. Uptake of organic nitrogen by plants. New Phytologist, 2010, 182(1):31-48.
doi: 10.1111/nph.2009.182.issue-1
[20] Pia W L, Ivanov I I, Sophie F, et al. Nitrogen regulation of root branching. Annals of Botany, 2006, 97(5):875-881.
doi: 10.1093/aob/mcj601
[21] 马雪峰, 高旻, 程治军. 植物氮素吸收与利用的分子机制研究进展. 作物杂志, 2013(4):32-38.
[22] Qiu X M, Sun Y Y, Ye X Y, et al. Signaling role of glutamate in plants. Frontiers in Plant Science, 2019, 10:1743.
doi: 10.3389/fpls.2019.01743
[23] Errasti-Murugarren E, Fort J, Bartoccioni P, et al. L amino acid transporter structure and molecular bases for the asymmetry of substrate interaction. Nature Communications, 2019, 10(1):1807.
doi: 10.1038/s41467-019-09837-z pmid: 31000719
[24] 张锡洲, 吴沂珀, 李廷轩. 不同施氮水平下不同氮利用效率小黑麦植株氮素积累分配特性. 中国生态农业学报, 2014, 22(2):151-158.
[25] 周碧青, 陈成榕, 杨文浩, 等. 茶树对可溶性有机和无机态氮的吸收与运转特性. 植物营养与肥料学报, 2017, 23(1):189-195.
[26] 邢瑶, 马兴华. 无机氮与氨基酸态氮配施对烟苗根系生长及氮代谢关键酶活性的影响. 烟草科技, 2017, 50(7):7-13.
[27] 韩瑞锋. 甘氨酸影响小白菜硝态氮吸收代谢的生理机制. 上海: 上海交通大学, 2019.
[28] 黄国存, 田波. 高等植物中的谷氨酸脱氢酶及其生理作用. 植物学通报, 2001, 18(4):396-401.
[29] 张智猛, 万书波, 戴良香, 等. 施氮水平对不同花生品种氮代谢及相关酶活性的影响. 中国农业科学, 2011, 44(2):280-290.
[30] Häusler R E, Blackwell R D, Lea P J, et al. Control of photosynthesis in barley leaves with reduced activities of glutamine synthetase or glutamate synthase:I. Plant characteristics and changes in nitrate,ammonium and amino acids. Planta, 1994, 194(3):406-417.
doi: 10.1007/BF00197542
[31] 段旺军, 李东亮, 戴亚, 等. 浓香型烟叶特色品种衰老期的氮素代谢特性. 烟草科技, 2012, 25(5):65-68.
[1] Shan Jiaye, Zhang Xuewei, Yan Min, Yang Jian, Wang Fei, He Jixian, Hu Gang, Wang Yuchen, Jing Yanqiu, Lei Qiang. Effects of Spraying Rare Earth Micro-Fertilizer on Growth and Physiological Characteristics of Flue-Cured Tobacco under Drought Stress [J]. Crops, 2023, 39(2): 100-105.
[2] Wang Yandan, Gao Xin, Peng Jinjian, Tang Feiyu. Comparison of Carbohydrate and Nitrogen Contents in Vegetative Organs between Early- and Middle-Maturing Cotton Lines and the Relationships to Dry Matter Accumulation [J]. Crops, 2023, 39(2): 106-114.
[3] Han Yuhuan, Liu Chen, Yang Long, Yu Tao. Effects of Topping Period and Number of Remained Leaves on Growth and Development of Upper Leaves of Flue-Cured Tobacco in Shandong Province [J]. Crops, 2023, 39(2): 157-162.
[4] Wang Yuehua, Zhou Junxue, Ma Yilin, Ma Junhong, Wang Yanfang, Zhao Shimin, Shen Hongtao, Li Youjun, Liu Ling. Effects of Different Harvest Maturity of Upper Six Leaves on Physiological Metabolism and Quality of Flue-Cured Tobacco Line LY1306 [J]. Crops, 2023, 39(2): 171-177.
[5] Wang Dequan, Liu Yang, Liu Jiang, Chen Keling, Wang Yi, Du Chuanyin, Du Yuhai, Ma Xinghua. Research Progress of Furrow and Ridge Rain-Harvesting Farming Technology and its Application Prospects in Flue-Cured Tobacco Production [J]. Crops, 2023, 39(1): 1-5.
[6] Chen Dong, Zou Jing, Guo Ganggang, Dai Wendian, Song Shaoguang, Huang Ying. Effects of Different Specifications of Seedling Trays on Quality and Main Physiological Characteristics of Tobacco Seedlings [J]. Crops, 2023, 39(1): 129-135.
[7] Zhang Lixia, Guo Xiaoyan, Shi Pengfei, Nie Liangpeng, Ling Jingwei, Shen Peilin, Ding Li, Zhang Lin, Lü Yuhu, Pan Ziliang. Effects of Drought Stress on Growth, Yield and Benefits of Kenaf in Vigorous Growing Period [J]. Crops, 2023, 39(1): 184-189.
[8] Zhang Yonggang, Ren Zhiguang, Xu Zhiqiang, Liu Jianguo, Zhang Xiaobing, Liu Huabing, Xia Chen, Cheng Changhe. Chemical Quality Evaluation of Flue-Cured Tobacco Based on Maximization of Deviation and BP Neural Network [J]. Crops, 2023, 39(1): 190-195.
[9] Li Diqin, Yao Shaoyun, Wang Qing, Yi Ke, Liu Yiyun, Tang Xiaoming, Peng Yuanyuan, Fu Changwu. Effects of Different Nitrogen Sources on the Growth and Development of Tobacco Seedlings [J]. Crops, 2023, 39(1): 201-206.
[10] Wang Yuan, Wang Jiming, Nian Fuzhao, Zheng Yuanxian, Xu Yinlian, Li Cuifen, Cui Yongquan, Zhang Qifu, Zhao Leifeng, Liao Xiaolin, He Yuansheng. Effects of Continuous Cropping with Rice Hull Biochar on Soil Physical and Chemical Properties and Growth of Flue-Cured Tobacco [J]. Crops, 2023, 39(1): 219-225.
[11] Zhou Hao, Qiu Xianjin, Xu Jianlong. Advance in Effects of Magnetized Water Irrigation on Crop Growth and Development [J]. Crops, 2022, 38(6): 1-6.
[12] Chen Yan, Chen Qiang, He Yi, Yu Huiping, Gao Junyi, Zhao Erwei, Lu Yingang. Effects of Tobacco Planting Ecoregions, Varieties and Their Interactions on Polyphenol Content and Quality of Flue-Cured Tobacco [J]. Crops, 2022, 38(6): 132-138.
[13] Ma Chunmei, Tian Yangqing, Zhao Qiang, Li Jiangyu, Wu Xueqin. Effects of Plant Growth Regulator Compound on Cotton Yield [J]. Crops, 2022, 38(6): 181-185.
[14] Zhang Mingfa, Zhang Sheng, Teng Kai, Chen Qianfeng, Tian Minghui, Jiang Zhimin, Chao Jin, Jian Panfeng, Deng Xiaohua. Effects of Fertilizing with Straw Biochar on Soil pH and Root Growth of Flue-Cured Tobacco in Huayuan, Hunan [J]. Crops, 2022, 38(6): 193-200.
[15] Feng Yu, Xing Baolong. Research on the Growth Characteristics and Forage Quality of Different Cowpea Varieties in Cold Region [J]. Crops, 2022, 38(6): 220-225.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!