Crops ›› 2023, Vol. 39 ›› Issue (6): 195-201.doi: 10.16035/j.issn.1001-7283.2023.06.027

Previous Articles     Next Articles

Effects of Foliar Spraying Polyaspartic Acid on Growth, Yield and Quality of Flue-Cured Tobacco

Duan Junya1(), Zhao Yuanyuan1, Wei Jianyu2, Wang Dexun3, Wang Zheng2, Wang Tingting1, Shi Hongzhi1()   

  1. 1College of Tobacco Science, Henan Agricultural University/Research Center for Tobacco Harm Reduction, Zhengzhou 450046, Henan, China
    2China Tobacco Guangxi Industrial Co., Ltd., Nanning 530001, Guangxi, China
    3Dali Branch of Yunnan Provincial Tobacco Company, Dali 671000, Yunnan, China
  • Received:2022-11-21 Revised:2022-12-06 Online:2023-12-15 Published:2023-12-15

Abstract:

In order to improve the growth and quality of flue-cured tobacco, the effects of spraying polyaspartic acid with different concentrations on the growth, yield and quality of flue-cured tobacco were studied with Honghuadajinyuan, which is resistant to black shank, as the test material. The results showed that, the growth and development of flue-cured tobacco plants could be significantly improved with the increase of the concentration of polyaspartic acid sprayed on the leaves, and the chlorophyll content and yield showed an increasing trend, but the increasing trend of 90mg/L tended to be gentle compared with 60mg/L polyaspartic acid treatment. The nitrate content decreased with the increase of polyaspartic acid concentration, and the proportion of medium and high quality tobacco, the total amount of neutral aroma components and the score of sensory quality of flue-cured tobacco were increased first and then decreased. Considering the yield and quality of tobacco leaves, it was appropriate to spray polyaspartic acid on the leaves at a concentration of 60mg/L. Compared with the control, the yield, output value and total aroma components increased by 17.13%, 22.18% and 32.48%, respectively. Therefore, spraying polyaspartic acid of appropriate concentration on tobacco leaves had significant effects on yield and quality.

Key words: Foliar spraying, Polyaspartic acid, Flue-cured tobacco, Tobacco growth, Yield, Quality

Table 1

Effects of polyaspartic acid on growth of flue-cured tobacco cm"

处理
Treatment
移栽后60d 60 days after transplanting 移栽后70d 70 days after transplanting
株高
Plant height
茎围
Stem girth
节距
Pitch
叶长
Leaf length
叶宽
Leaf width
株高
Plant height
茎围
Stem girth
节距
Pitch
叶长
Leaf length
叶宽
Leaf width
CK 132.50c 10.36b 5.86b 58.79b 23.14b 125.56c 10.99b 5.87b 63.48b 26.16b
T1 136.13b 10.46ab 6.05ab 62.13a 25.80a 127.25b 11.64a 6.12ab 70.68a 29.99a
T2 139.38a 10.51ab 6.11a 62.88a 26.50a 130.19a 11.76a 6.18a 70.94a 30.24a
T3 140.13a 10.78a 6.23a 63.38a 27.54a 130.38a 11.78a 6.25a 72.11a 30.39a

Fig.1

Effects of polyaspartic acid on SPAD value of middle leaves of flue-cured tobacco"

Table 2

Effects of polyaspartic acid on economic characteristics of flue-cured tobacco"

处理
Treatment
产量
Yield
(kg/667m2)
均价
(元/kg)
Mean price
(yuan/kg)
产值
(元/667m2
Output value
(yuan/667m2)
中上等烟比例
Proportion of
medium and high
quality tobacco (%)
CK 150.22c 36.63c 5502.56c 82.63c
T1 164.15b 40.21a 6600.47b 90.75a
T2 175.95a 38.21b 6723.05a 86.05b
T3 178.32a 37.68b 6719.10a 85.66b

Table 3

Effects of polyaspartic acid on physical properties of flue-cured tobacco leaves"

部位
Position
处理
Treatment
叶长
Leaf length (cm)
叶宽
Leaf width (cm)
单叶重
Single leaf weight (g)
叶质重
Leaf density (g/m2)
含梗率
Midrib ratio (%)
长宽比
Length-width ratio
上部Upper CK 64.38c 18.38b 12.18c 113.90b 20.24a 3.50
T1 67.54b 20.31a 13.99b 115.91b 19.66a 3.33
T2 67.63b 20.78a 14.15b 123.94a 19.48a 3.25
T3 70.81a 20.83a 16.93a 125.12a 19.48a 3.40
中部Middle CK 67.58b 24.74b 12.54c 95.40b 24.36a 2.73
T1 73.67a 26.36a 14.98b 98.17b 22.22b 2.79
T2 74.54a 26.78a 15.26b 100.68b 21.00c 2.78
T3 74.89a 27.04a 17.63a 117.16a 19.98c 2.77
下部Lower CK 65.68c 26.10b 8.36c 55.29c 31.17a 2.52
T1 69.00b 28.02a 10.91b 85.06b 26.71b 2.46
T2 71.03ab 29.46a 12.46ab 88.82a 25.51bc 2.41
T3 72.73a 29.68a 13.21a 89.80a 23.94c 2.45

Table 4

Effects of polyaspartic acid on chemical composition content of flue-cured tobacco"

部位
Position
处理
Treatment
还原糖
Reducing
sugar (%)
总糖
Total sugar
(%)
烟碱
Nicotine
(%)
总氮
Total nitrogen
(%)
淀粉
Starch
(%)
糖碱比
Sugar-
nicotine ratio
氮碱比
Nitrogen-
nicotine ratio
上部Upper CK 35.78b 37.29bc 2.47ab 2.09a 5.70c 15.10c 0.85b
T1 36.52b 36.95c 2.57a 2.05ab 5.94bc 14.38c 0.80c
T2 37.05ab 39.06b 2.41b 2.00b 6.12b 16.21b 0.83bc
T3 39.60a 43.07a 2.02c 1.83c 6.51a 21.32a 0.91a
中部Middle CK 36.80b 41.40b 1.58d 1.85a 4.88c 26.20a 1.17a
T1 38.96a 41.65b 2.20a 1.82a 5.62b 18.93d 0.83c
T2 38.63a 42.60ab 2.06b 1.73b 5.64b 20.68c 0.84c
T3 39.59a 43.89a 1.70c 1.65c 6.65a 25.82b 0.97b
下部Lower CK 29.11b 30.53b 1.39b 2.02a 4.26d 21.96b 1.45a
T1 36.55a 39.31a 1.71a 1.80b 5.08c 22.99b 1.05c
T2 35.18a 39.35a 1.45b 1.73bc 5.38b 27.14a 1.19b
T3 36.31a 39.48a 1.41b 1.67c 6.24a 28.00a 1.18b

Table 5

Effects of polyaspartic acid on nitrate content in flue-cured tobacco μg/g"

处理
Treatment
上部叶
Upper leaf
中部叶
Middle leaf
下部叶
Lower leaf
CK 245.74a 286.89a 206.24a
T1 217.55b 250.32b 194.55b
T2 212.12b 215.58c 159.94c
T3 209.37b 197.36d 155.81c

Table 6

Effects of polyaspartic acid on the content of nuetral aroma components in the middle leaves of flue-cured tobacco μg/g"

类型
Type
致香成分
Aroma component
处理Treatment
CK T1 T2 T3
芳香族氨基酸降解产物
Aromatic amino acid degradation products
苯甲醛 0.23 0.26 0.31 0.25
苯甲醇 2.71 3.49 2.96 1.97
苯乙醛 0.80 0.75 1.04 0.62
苯乙醇 0.86 1.30 1.03 0.68
小计 4.60c 5.80a 5.34b 3.52d
非酶棕色化反应产物
Non-enzymatic browning reaction products
糠醛 12.90 13.78 13.71 14.70
糠醇 1.58 1.12 1.40 1.54
2-乙酰基呋喃 0.24 0.22 0.22 0.29
3,4-二甲基-2,5-呋喃二酮 1.68 1.72 1.61 1.67
5-甲基糠醛 0.50 0.49 0.54 0.56
2,6-壬二烯醛 0.95 0.84 0.80 1.06
小计 17.85b 18.17b 18.28b 19.82a
类胡萝卜素降解产物
Carotenoid degradation products
6-甲基-5-庚烯-2-酮 1.90 2.10 2.51 2.21
6-甲基-5-庚烯-2-醇 0.53 0.55 0.58 0.59
愈创木酚 4.29 4.25 4.37 4.69
芳樟醇 1.01 1.03 1.05 1.12
β-大马酮 14.74 13.32 14.55 14.74
β-二氢大马酮 3.42 3.13 3.84 2.13
氧化异佛尔酮 0.17 0.15 0.18 0.19
香叶基丙酮 4.10 4.42 4.73 4.49
二氢猕猴桃内酯 1.38 1.22 1.68 1.75
3-羟基-β-二氢大马酮 0.49 0.52 0.65 0.84
巨豆三烯酮1 0.40 0.47 0.53 1.46
巨豆三烯酮2 1.55 1.61 1.97 1.98
巨豆三烯酮3 2.56 4.27 4.50 7.68
巨豆三烯酮4 4.15 4.10 5.17 6.95
螺岩兰草酮 0.62 0.51 1.02 0.58
法尼基丙酮 9.28 8.65 11.35 9.61
藏花醛 0.04 0.04 0.04 0.06
β-环柠檬醛 1.23 1.14 1.38 2.07
小计 51.86c 51.48c 60.10b 63.14a
西柏烷类降解产物
Cyperane degradation products
茄酮 43.16b 42.71b 45.98b 61.30a
叶绿素降解产物
Chlorophyll degradation products
新植二烯 188.10c 205.29b 275.11a 206.63b
总量Total aroma 305.57d 323.45c 404.81a 354.41b

Table 7

Effects of polyaspartic acid on the sensory quality of upper and middle leaves of flue-cured tobacco (score)"

部位
Position
处理
Treatment
香气质
Aroma quality
(9-0)
香气量
Aroma quantity
(9-0)
浓度
Concentration
(9-0)
杂气
Offensive odor
(9-0)
劲头
Stiffness
(9-0)
刺激性
Irritancy
(9-0)
余味
Remaining taste
(9-0)
燃烧性
Flammability
(9-0)
上部Upper CK 6.30 6.10 5.90 6.10 5.60 6.50 6.20 6.80
T1 6.50 6.20 6.00 6.10 5.70 6.60 6.30 7.00
T2 6.40 6.50 6.20 6.20 5.80 6.50 6.30 7.00
T3 6.40 6.40 6.10 6.10 5.80 6.50 6.20 6.80
中部Middle CK 6.40 6.00 6.00 6.10 5.50 6.50 6.00 7.00
T1 6.60 6.10 6.00 6.30 5.50 6.50 6.30 7.00
T2 6.60 6.40 6.20 6.20 5.70 6.50 6.30 7.00
T3 6.50 6.30 6.20 6.20 5.60 6.50 6.20 6.80
[1] 杨晋辉, 刘泰, 陈艳雪, 等. 聚天门冬氨酸/盐的合成、改性及应用研究进展. 材料导报, 2018, 32(11):1852-1862.
[2] 曾路生, 石元亮, 卢宗云, 等. 新型聚氨酸增效剂对蔬菜生长和产量的影响. 中国农学通报, 2013, 29(31):168-173.
[3] Sayed H A, Esraa A, Jiang W J, et al. Effect of different plant bio-stimulants in improving cucumber growth under soilless culture. European Journal of Biological Research, 2021, 11(2):146-155.
[4] 黄毅, 李衍素, 贺超兴, 等. 根施聚天门冬氨酸对日光温室黄瓜生长、产量及矿质元素吸收的影响. 中国蔬菜, 2018(1):44-49.
[5] 代明, 陈庆飞, 胡兆平, 等. 腐植酸、聚天冬氨酸复配复合肥对西兰花生长、产量及品质的影响. 安徽农业科学, 2015, 43 (29):44-45,234.
[6] 张弓长, 蔡虎铭, 钱程, 等. 水溶肥中添加聚天冬氨酸和黄腐酸钾对芹菜产量及经济效益的影响. 安徽农业科学, 2016, 44(33):103-105.
[7] 琚茜茜, 梁家作, 秦健, 等. 聚天冬氨酸溶液灌根对芥蓝生长发育及品质的影响. 北方园艺, 2019(23):1-5.
[8] 张小燕, 马晖玲, 马政生. 聚天门冬氨酸对紫花苜蓿生物学性状及产量的影响. 草业科学, 2010, 27(8):114-118.
[9] 焦永康, 范占权, 刘书通, 等. 叶面喷施聚天冬氨酸盐对黄冠梨效应的研究. 落叶果树, 2017, 49(4):9-10.
[10] 韩真, 杜远鹏, 翟衡, 等. 叶面喷施聚天门冬氨酸对巨峰葡萄产量和果实品质的影响. 山东农学科学, 2019, 51(10):96-98.
[11] 郭瑞, 周平, 金光, 等. 多肽对桃生长发育及品质的影响. 中国南方果树, 2015, 44(3):141-143.
[12] 张洪生, 井涛, 赵美爱, 等. 聚天冬氨酸和保水剂对干旱条件下玉米幼苗生长的影响. 中国农学通报, 2013, 29(6):59-62.
[13] 高娇, 董志强, 徐田军, 等. 聚糠萘水剂对不同积温带玉米花后叶片氮同化的影响. 生态学报, 2014, 34(11):2938-2947.
[14] 徐田军, 董志强, 高娇, 等. 聚糠萘水剂对不同积温带玉米叶片衰老和籽粒灌浆速率的影响. 作物学报, 2012, 38(9):1698-1709.
[15] Deng F, Wang L, Ren W, et al. Enhancing nitrogen utilization and soil nitrogen balance in paddy fields by optimizing nitrogen management and using polyaspartic acid urea. Field Crops Research, 2014, 169:30-38.
doi: 10.1016/j.fcr.2014.08.015
[16] Deng F, Wang L, Mei X F, et al. Morphological and physiological characteristics of rice leaves in response to PASP- urea and optimized nitrogen management. Archives of Agronomy and Soil Science, 2017, 63(11):1582-1596.
doi: 10.1080/03650340.2017.1292501
[17] Deng F, Wang L, Li Q P, et al. Relationship between nitrogen accumulation and nitrogen use efficiency of rice under different urea types and management methods. Archives of Agronomy and Soil Science, 2018, 64(9):1278-1289.
doi: 10.1080/03650340.2018.1424328
[18] 曹本福, 桂阳, 祖庆学, 等. 减量施肥下聚天冬氨酸对烤烟生长、产量及养分吸收的影响. 中国烟草科学, 2018, 39(5):57-63.
[19] 曹本福, 陆引罡, 刘丽, 等. 减施氮肥下聚天冬氨酸对烤烟生理特性及氮肥去向的影响. 水土保持学报, 2019, 33(5):223-229.
[20] 国家烟草专卖局. 烟草农艺性状调查测量方法:YC/T 142- 2010. 北京: 中国标准出版社, 2010.
[21] 国家烟草专卖局. 烟草及烟草制品感官评价方法:YC/T 138- 1998. 北京: 中国标准出版, 1998.
[22] 曾建敏, 姚恒, 李天福, 等. 烤烟叶片叶绿素含量的测定及其与SPAD值的关系. 分子植物育种, 2009, 7(1):56-62.
[23] 李梦露, 冯晓洁, 王君, 等. 基质添加聚天门冬氨酸对番茄幼苗生长的影响. 中国蔬菜, 2022(11):65-69.
[24] 杨启航, 陈建军, 叶晓青, 等. 减氮条件下配施聚天门冬氨酸对烤烟氮代谢及氮素吸收利用的影响. 烟草科技, 2021, 54 (10):1-10.
[25] 唐会会, 许艳丽, 王庆燕, 等. 聚天门冬氨酸螯合氮肥减量基施对东北春玉米的增效机制. 作物学报, 2019, 45(3):431-442.
doi: 10.3724/SP.J.1006.2019.83056
[26] Deng F, Wang L, Mei X F, et al. Polyaspartate urea and nitrogen management affect nonstructural carbohydrates and yield of rice. Crop Science, 2016, 56(6):3272-3285.
doi: 10.2135/cropsci2016.02.0130
[27] Deng F, Wang L, Mei X F, et al. Polyaspartic acid (PASP)-urea and optimised nitrogen management increase the grain nitrogen concentration of rice. Scientific Reports, 2019, 9(1):313.
doi: 10.1038/s41598-018-36371-7 pmid: 30670728
[28] 孙克刚, 张运红, 杜君, 等. 尿素添加不同增效剂对夏玉米产量及氮肥利用率的影响. 中国土壤与肥料, 2017(1):45-47.
[29] 朱凌宇, 徐荣, 张家宏, 等. 聚天冬氨酸增效复合肥在小麦上的应用效果. 江苏农业科学, 2016, 44(6):132-134.
[30] Ji P T, Li X L, Peng Y J, et al. Effect of polyaspartic acid and different dosages of controlled-release fertilizers on nitrogen uptake, utilization, and yield of maize cultivars. Bioengineered, 2021, 12(1):527-539.
doi: 10.1080/21655979.2020.1865608 pmid: 33535880
[31] 冯雨晴, 李亚飞, 史宏志. 叶面喷施丙三醇对烟叶碳氮代谢及硝酸盐积累的影响. 中国烟草学报, 2019, 25(5):53-62.
[32] 王耀强, 朱文龙, 郑凯, 等. 聚天冬氨酸对植物营养液增效的研究. 中国农学通报, 2017, 33(15):62-70.
doi: 10.11924/j.issn.1000-6850.casb16060048
[33] 管庆林, 朴晟源, 张思唯, 等. 中微量元素配施对雪茄烟叶光合特性、碳氮代谢及产质量的影响. 作物杂志, 2023(5):187- 196.
[34] 黄秀声, 黄勤楼, 杨信, 等. 浇施沼液对狼尾草植株硝酸盐累积及其氮素利用效率研究. 草业学报, 2012, 21(3):61-68.
[1] Liu Zhewen, Guo Dandan, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Liu Xiwei, Wang Yujiao, Shi Shubing, Zhao Guangcai. Response of Nitrogen Accumulation and Translocation after Anthesis in Strong Gluten Wheat to Nitrogen Topdressing Period and Proportion [J]. Crops, 2023, 39(6): 114-120.
[2] Zhou Xu, He Xiaolei, Cao Liang, Li Duo, Fu Chenye, Zhang Mingcong, Zhang Yuxian, Wang Mengxue. Effects of Different Water Stress and Rehydration at Seedling Stage on Antioxidant Properties and Yield of Soybean [J]. Crops, 2023, 39(6): 135-142.
[3] Yang Shanwei, Liang Renmin, Zhao Haihong, Wei Guijian, He Dengmei, Huang Xumou, Hu Zhongyin, Wei Chunxiang, Xu Chang, Wei Minchao, Wei Shuang, Luo Jiteng, Xu Yingying, Zhang Xiuhua, Han Yi, Wang Shiqiang. Effects of Low Temperature Stress at Booting Stage on Yield and Its Components of High Quality Fragrant Rice [J]. Crops, 2023, 39(6): 143-149.
[4] Liu Xiwei, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Chang Xuhong. Impacts Mechanism of Drought and Heat Stress in the Middle and Late Growing Period on Wheat Grain Yield Formation Process and Mitigation Measures [J]. Crops, 2023, 39(6): 17-25.
[5] Dong Haosheng, Wang Qi, Yan Peng, Xu Yanli, Zhang Wei, Lu Lin, Dong Zhiqiang. Effects of ECK on the Lodging Resistance and Yield of Foxtail Millet Stem [J]. Crops, 2023, 39(6): 181-189.
[6] Liang Zhongyu, Xue Jun, Zhang Guoqiang, Ming Bo, Shen Dongping, Fang Liang, Zhou Linli, Zhang Yuqin, Yang Hengshan, Wang Keru, Li Shaokun. Effects of Phosphorus Application Rate on Lodging Resistance of Maize under Integrated Water and Fertilizer [J]. Crops, 2023, 39(6): 190-194.
[7] Xu Shihao, Zhao Chunbo, Huangfu Liyun, Fan Xintong, Chen Shanshan, Han Zhongcai, Han Yuzhu. Effects of Different Potassium Sources on Potassium Accumulation, Transport and Yield Components in Potato [J]. Crops, 2023, 39(6): 202-208.
[8] Hao Zhiyong, Yang Guangdong, Hu Zunyan, Li Jinghua, Sun Bangsheng, Chen Linqi. Effects of Different Fertilizers on Yield, Agronomic Characteristics and Quality of Early Maturing Sorghum [J]. Crops, 2023, 39(6): 218-223.
[9] Zhao Lijie, Zhao Haiyan, Han Genlan, Wang Jiang, Nie Mengʼen, Du Huiling, Yuan Xiangyang, Dong Shuqi. Effects of Nitrogen Fertilizer Combined with Organic Fertilizer on Quality of Millet [J]. Crops, 2023, 39(6): 224-232.
[10] Gao Xiaoli, Huang Haijiao, Tian Pengjia, Nimayangzong , Chang Zihui, Labazhaxi , Liao Wenhua, Yang Wencai. Evaluation of Production Performance and Quality of Forage Pea in Alpine Region by Membership Function Method [J]. Crops, 2023, 39(6): 86-93.
[11] Li Xinghe, Wang Haitao, Liu Cunjing, Tang Liyuan, Zhang Sujun, Cai Xiao, Zhang Xiangyun, Zhang Jianhong. QTL Mapping for Fiber Quality Traits Using Gossypium barbadense Chromosome Segment Introgression Lines [J]. Crops, 2023, 39(5): 1-9.
[12] Wang Zhenlong, Su Cuicui, Zhou Qi, Deng Chaochao, Zhou Yanfang. The Effects of Reducing Nitrogen Fertilizer and Applying Organic Fertilizer on the Yield, Quality, and Soil Quality of Helianthus tuberosus L. [J]. Crops, 2023, 39(5): 104-109.
[13] Liu Yan, Qu Hang, Xing Yuehua, Wang Xiaohui, Gong Liang. Effects of New Types of Nitrogen Fertilizer on Rice Growth, Nitrogen Use Efficiency and Economic Benefit [J]. Crops, 2023, 39(5): 110-116.
[14] Liu Qiuyuan, Li Meng, Gao Yangguang, Shi Mengyu, Wei Yunfei, Ji Xin, Li Li, Liu Yali, Wang Fujuan. Effects of Different Nitrogen Fertilization Patterns on Yield and Quality of Conventional Japonica Rice under Reduced Nitrogen [J]. Crops, 2023, 39(5): 131-137.
[15] Yang Mei, Yang Weijun, Gao Wencui, Jia Yonghong, Zhang Jinshan. Effects of Combined Application of Biochar and Nitrogen Fertilizer on Dry Matter Transport, Agronomic Characteristics and Yield of Winter Wheat in Irrigation Area [J]. Crops, 2023, 39(5): 138-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!