Crops ›› 2025, Vol. 41 ›› Issue (3): 210-217.doi: 10.16035/j.issn.1001-7283.2025.03.029

Previous Articles     Next Articles

Effects of Interaction between Photosynthetic Bacteria and the Number of Retained Leaves on Physiological Metabolism, Chemical Quality, Yield and Quality of Flue-Cured Tobacco

Wei Mengyang1(), Luo Zhenbao2(), He Shuai2, Ma Qian2, Ma Guankai2, Xi Feihu1, Luo Dongsheng1, Jing Yanqiu1(), Yu Qiwei2(), Wang Maoxian2()   

  1. 1College of Tobacco, Henan Agricultural University, Zhengzhou 450046, Henan, China
    2Bijie Branch of Guizhou Provincial Tobacco Company, Bijie 551700, Guizhou, China
  • Received:2024-02-26 Revised:2024-03-23 Online:2025-06-15 Published:2025-06-03
  • Contact: Jing Yanqiu,Yu Qiwei,Wang Maoxian E-mail:w2718282348@163.com;30734200@qq.com;jingyanqiu72t@163.com;ycs327@126.com;1035526313@qq.com

Abstract:

In order to explore the effects of the interaction between photosynthetic bacteria and the number of retained leaves on the physiology, biochemistry, yield and quality of flue-cured tobacco, 'Yunyan 87' was used as the test material in this study, and a two-factor split-plot experiment (photosynthetic bacteria concentration: 1:500, 1:300, 1:100; the leaf retention number: 19, 21, 23 leaves) was conducted to study the effects of the two and their interaction on photosynthetic characteristics, carbon and nitrogen metabolism characteristics, chemical composition and economic traits of flue-cured tobacco. The results showed that the concentration of photosynthetic bacteria was the main effect factor. At the concentration of 1:300, the chlorophyll content of tobacco leaves was significantly increased, and the formation of degradation products such as carotenoids and phenylalanine was promoted. The sensory quality and economic performance were also better. Compared with the other treatments, the chlorophyll content of the treatment with photosynthetic bacteria spraying concentration of 1:300 and 21 retained leaves increased by 21.47%, the neutral aroma content increased by 4.23%-5.04%, the output value increased by 6.95%-8.70%, the proportion of first-class tobacco increased by 3.05%-6.13%, and the sensory quality score was the highest. In summary, the treatment with photosynthetic bacteria spraying concentration of 1:300 and 21 retained leaves can better improve the quality of tobacco leaves, optimize the grade structure, and improve economic benefits.

Key words: Photosynthetic bacteria, Number of retained leaves, Flue-cured tobacco, Yield, Quality

Table 1

Design of experiment"

处理
Treatment
光合细菌喷施
Photosynthetic bacteria
application
留叶数(片/株)
Number of leaves left
(leaves/plant)
G1Y1 1:500 19
G1Y2 1:500 21
G1Y3 1:500 23
G2Y1 1:300 19
G2Y2 1:300 21
G2Y3 1:300 23
G3Y1 1:100 19
G3Y2 1:100 21
G3Y3 1:100 23

Fig.1

Effects of different treatments on chlorophyll content of flue-cured tobacco Different lowercase letters indicate significant differences (P < 0.05), the same below."

Fig.2

Effects of different treatments on photosynthetic characteristics of flue-cured tobacco"

Fig.3

Effects of different treatments on activities of enzymes related to nitrogen metabolism in flue-cured tobacco"

Fig.4

Effects of different treatments on enzyme activities related to carbon metabolism in flue-cured tobacco"

Table 2

Effects of different treatments on conventional chemical components of flue-cured tobacco %"

处理Treatment 总糖Total sugar 还原糖Reducing sugar 总氮Total nitrogen 烟碱Nicotine 钾Potassium 氯Chlorine
G1Y1 22.55bcd 21.51ab 2.13ab 2.70ab 1.81c 0.23e
G1Y2 21.42cd 20.34bcd 1.99bc 2.82a 2.14b 0.26c
G1Y3 20.87d 19.82dce 1.93c 2.45cd 1.81c 0.25cd
G2Y1 24.43a 22.21a 2.19a 2.39cde 2.13b 0.26c
G2Y2 24.29a 22.11a 2.15a 2.56bc 2.58a 0.32a
G2Y3 24.11ab 21.01abc 2.11ab 2.33de 2.09b 0.24de
G3Y1 22.96abc 20.29bcd 2.04abc 2.26e 1.79c 0.25cd
G3Y2 22.02cd 19.39ce 1.98bc 2.48cd 1.83c 0.26c
G3Y3 21.22d 18.70e 1.96c 2.21e 1.80c 0.25cd
Eta2 (G) 0.711 0.665 0.543 0.744 0.894 0.647
Eta2 (Y) 0.323 0.452 0.377 0.676 0.797 0.775
Eta2 (G×Y) 0.122 0.072 0.128 0.177 0.631 0.739

Table 3

Effects of different treatments on aroma components of flue-cured tobacco μg/g"

处理
Treatment
类胡萝卜素
类降解产物
Carotenoid
degradation
products
苯丙氨酸
类降解产物
Phenylalanine
degradation
products
棕色化
反应产物
Browning
reaction
product
总量
Total
amount
G1Y1 92.94e 13.81d 29.59ab 136.35d
G1Y2 100.68bc 17.03b 29.05ab 146.76bc
G1Y3 94.05de 16.63b 29.08ab 139.76cd
G2Y1 107.62a 13.17d 28.04bc 148.83ab
G2Y2 108.36a 18.95a 29.03ab 156.33a
G2Y3 106.67a 13.28d 30.03a 149.99ab
G3Y1 99.57cd 15.66c 29.16ab 144.39bcd
G3Y2 105.90ab 18.35a 27.53c 151.78ab
G3Y3 99.41cd 10.36e 26.73c 136.50d
Eta2 (G) 0.778 0.558 0.477
Eta2 (Y) 0.456 0.966 0.062
Eta2 (G×Y) 0.207 0.946 0.556

Table 4

Effects of different treatments on sensory quality of flue-cured tobacco"

处理
Treatment
香气质(0-9)
Aroma quality
香气量(0-9)
Aroma quantity
浓度(0-9)
Concentration
刺激性(0-9)
Irritation
杂气(0-9)
Offensive odor
劲头(0-9)
Stiffness
余味(0-9)
Aftertaste
燃烧性(0-9)
Flammability
合计
Total
G1Y1 6.5d 5.4e 6.0d 5.5d 6.7b 5.6b 6.3ab 7.5b 49.6d
G1Y2 7.2b 6.1bc 6.3c 5.5d 6.6b 5.8b 6.4ab 7.5b 51.5bc
G1Y3 6.5d 5.5e 6.0d 5.6d 6.7b 5.6b 6.3ab 7.5b 49.8cd
G2Y1 7.2b 6.3ab 6.6b 5.8c 6.6b 5.8b 6.4ab 7.5b 52.3ab
G2Y2 7.5a 6.5a 6.8a 5.8c 6.5b 6.0a 6.5a 7.8a 53.5a
G2Y3 7.0bc 6.0cd 6.5b 5.8c 6.5b 5.8b 6.3ab 7.6ab 51.6bc
G3Y1 6.5d 5.8d 6.2c 6.0b 6.7b 5.6b 6.2bc 7.5b 50.3bcd
G3Y2 6.8c 6.0cd 6.3c 6.0b 6.7b 5.8b 6.3ab 7.5b 51.5bc
G3Y3 6.2e 5.5e 6.0d 6.2a 7.0a 5.4c 6.0c 7.5b 49.8cd
Eta2 (G) 0.933 0.859 0.894 0.918 0.485 0.658 0.382 0.203
Eta2 (Y) 0.906 0.821 0.700 0.375 0.206 0.658 0.300 0.100
Eta2 (G×Y) 0.491 0.467 0.182 0.286 0.285 0.229 0.087 0.182

Table 5

Effects of different treatments on economic traits of flue-cured tobacco"

处理
Treatment
产量
Yield (kg/hm2)
产值(元/hm2
Output value (yuan/hm2)
均价(元/kg)
Mean price (yuan/kg)
上等烟比例
The first-class tobacco proportion (%)
G1Y1 2170.93d 60 113.05e 27.69bc 63.64bc
G1Y2 2231.93d 62 761.87cd 28.12b 64.50b
G1Y3 2403.05b 63 200.22c 26.30e 59.64e
G2Y1 2175.71d 65 836.98b 30.26a 68.47a
G2Y2 2420.21b 71 565.61a 29.57a 67.55a
G2Y3 2507.21a 66 917.43b 26.69de 60.68e
G3Y1 2203.71d 60 690.17de 27.54bcd 62.79cd
G3Y2 2313.29c 62 366.30cde 26.96cde 61.42de
G3Y3 2415.44b 63 332.84c 26.22e 57.76f
Eta2 (G) 0.759 0.771 0.814 0.874
Eta2 (Y) 0.937 0.431 0.847 0.917
Eta2 (G×Y) 0.656 0.185 0.602 0.498
[1] 胡国艺. 烟草优质高效栽培的关键技术及其把握. 现代园艺, 2017(11):62.
[2] 李茜, 苏国权, 危月辉, 等. 增施微生物菌肥对烤烟生长发育及烟叶品质的影响. 江苏农业科学, 2021, 49(19):123-129.
[3] 贺镜元. 沼泽红假单胞菌对茶树生长及茶叶品质的影响. 杨凌:西北农林科技大学, 2023.
[4] 李雪洁, 赵鑫, 李嘉欣, 等. 光合细菌在环境领域的研究与应用进展. 环境科学与管理, 2016, 41(10):32-35.
[5] 吴向华, 杨启银, 刘五星, 等. 光合细菌的研究进展及其应用. 中国农业科技导报, 2004(2):35-38.
[6] 张信娣, 史永军, 陈银科. 光合细菌和有机肥对土壤主要微生物类群的影响. 中国土壤与肥料, 2007(3):59-62.
[7] 王慧娟, 付小兰, 刘祥丽. 光合细菌在农业生产上的应用研究进展. 安徽农学通报, 2013, 19(4):26-27,42.
[8] 苏品, 张德咏, 张卓, 等. 光合细菌的农用微生物功能解读. 中国生物防治学报, 2021, 37(1):30-37.
doi: 10.16409/j.cnki.2095-039x.2021.02.012
[9] 梁桂广, 陈克玲, 韦建玉, 等. 施氮量与留叶数互作对南平烟区‘翠碧1号’生长及烟叶质量的影响. 中国农学通报, 2023, 39(27):29-35.
doi: 10.11924/j.issn.1000-6850.casb2022-0866
[10] 侯冰清, 邢雪霞, 赵喆, 等. 密度、施氮量和留叶数对烤烟产质量的影响. 山东农业科学, 2015, 47(9):46-51,55.
[11] 贺广生, 杨盼盼, 杨芳, 等. 高效光合细菌菌剂对番茄和土壤肥力的影响. 广东农业科学, 2015, 42(1):56-60,72.
[12] 罗路云. 沼泽红假单胞菌PSB06调控根际微生态环境促进辣椒苗期生长发育. 长沙:湖南农业大学, 2022.
[13] 葛红莲, 赵怀松. 复合光合菌剂PS21不同施用方法对黄瓜幼苗生长的影响. 南方农机, 2017, 48(4):5-6.
[14] 李再军, 彭克勤, 王少先, 等. 烤烟配方肥增效剂对烤烟光合作用的影响初探. 中国农学通报, 2005(7):252-254,272.
[15] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
[16] 陈富彩. 外源GA3和IAA对烤烟上部叶碳氮代谢及品质的影响. 杨凌:西北农林科技大学, 2016.
[17] 国家烟草专卖局. 烟草及烟草制品水溶性糖的测定连续流动法:YC/T 159-2019. 北京: 中国标准出版社,2019.
[18] 国家烟草专卖局. 烟草及烟草制品总氮的测定连续流动法:YC/T 161-2002. 北京: 中国标准出版社,2002.
[19] 国家烟草专卖局. 烟草及烟草制品总植物碱的测定连续流动(硫氰酸钾)法:YC/T 468-2013. 北京: 中国标准出版社,2013.
[20] 国家烟草专卖局. 烟草及烟草制品钾的测定连续流动法:YC/T 217-2007. 北京: 中国标准出版社,2007.
[21] 国家烟草专卖局. 烟草及烟草制品氯的测定连续流动法:YC/T 162-2011. 北京: 中国标准出版社,2011.
[22] 李京鑫, 何力, 孙觅, 等. 润叶参数对烟叶香味物质的影响. 食品与机械, 2022, 38(5):191-201.
[23] 刘峰峰, 吴明, 周迎辉, 等. 生长素与钼配施对烤烟上部叶生理代谢及品质的影响. 中国农业科技导报, 2024, 26(2):208-215.
[24] 陈丽洁, 苏品, 张卓, 等. 一株耐盐类球红细菌的分离鉴定及其对不同作物的促生作用. 南方农业学报, 2019, 50(5):964-973.
[25] 赵芮晗, 张欢, 卢海凤, 等. 追施光合细菌与猪场粪污对生菜生长效果的研究. 河南农业大学学报, 2020, 54(5):786-792.
[26] 成飞雪. 光合细菌代谢产物5-氨基乙酰丙酸杀线虫作用及其机理研究. 长沙:湖南农业大学, 2011.
[27] 武丽娜. 光合细菌对水培黄瓜苗期生长的影响. 安徽农业科学, 2012, 40(11):6409-6410,6477.
[28] 陈颐, 鲁康兴, 周彬, 等. 施氮量和留叶数互作对红大鲜烟叶素质及产量的影响. 江苏农业科学, 2018, 46(19):0-84.
[29] 王凯. 种植密度和留叶数对巫山烤烟光合特性和产质量的影响研究. 重庆:西南大学, 2014.
[30] 魏晓凯, 景延秋, 何佶弦, 等. 外源亚精胺对烤烟幼苗干旱胁迫的缓解效应研究. 作物杂志, 2022(3):143-148.
[31] 李健忠, 薛立新, 朱金峰, 等. 打顶后喷施油菜素内酯和生长素对烤烟田间生长、碳氮代谢及烟叶品质的影响. 中国生态农业学报, 2015, 23(11):1404-1412.
[32] 金佳威, 刘咏艳, 王惠, 等. 施氮量和留叶数对烤烟LY1306上部叶生理特性及产质量的影响. 山东农业科学, 2023, 55 (4):56-64.
[33] 黄佳, 李信, 王子一, 等. 种植密度和施氮量对烤烟碳氮代谢关键酶及品质的影响. 江苏农业科学, 2023, 51(9):82-88.
[34] 高琴, 刘国顺, 李姣, 等. 不同氮肥水平对烤烟质体色素和碳氮代谢及品质的影响. 河南农业大学学报, 2013, 47(2):138-142.
[35] 李国明. 上部烟叶光合及碳氮代谢机理与调控措施研究. 贵阳:贵州大学, 2023.
[36] 刘晶晶, 崔光周, 段旺军, 等. 生态因素影响烟草香味特征的研究进展. 河南农业科学, 2023, 52(2):1-11.
[37] 赵辉, 赵铭钦, 程玉渊, 等. 不同密度和留叶数对烤烟质体色素及其降解产物的影响. 江苏农业学报, 2010, 26(1):46-50.
[38] 郑昕, 史宏志, 杨兴有, 等. 施氮量与留叶数对万源晒红烟产质量和香气成分的影响. 中国烟草科学, 2018, 39(1):49-56.
[39] 贾保顺, 王念磊, 符云鹏, 等. 氮素对不同烤烟品种化学品质及中性致香物质的影响. 山东农业科学, 2017, 49(3):83-88.
[40] 夏体渊, 王炽, 陈兴位, 等. 不同烤烟品种留叶数对烤烟产量、化学成分、评吸质量的影响. 西南农业学报, 2017, 30(3):681-685.
[41] 李莞晴, 付茂辉, 贺国强, 等. 种植密度和留叶数对烤烟品种龙江911生长、光合特性及产质量的影响. 浙江农业科学, 2023, 64(5):1251-1257.
doi: 10.16178/j.issn.0528-9017.20220777
[42] 邵雪莲, 刘润生, 曾浩, 等. 不同打顶时间及留叶数对云烟87产质量的影响. 农业科技通讯, 2017(6):130-134.
[1] He Yunxia, Ma Jianhui, Zhang Daijing, Liu Donghua, Chao Xiaoyan, Chen Huiping, Li Chunxi. Study on the Effect of Different Nitrogen Fertilizer Synergists on Reducing Gaseous Nitrogen Loss and Increasing Yield in Wheat Field of Northern Henan [J]. Crops, 2025, 41(3): 108-115.
[2] Wang Jiatong, Ma Yingchen, Feng Yanfei, Lu Jiahui, Guo Zhenqing, Li Xueli, Li Yun, Han Yucui, Lin Xiaohu. Effects of Reduction of Nitrogen Topdressing Application on Phosphorus and Potassium Fertilizer Utilization and Quality of Spring Wheat in Eastern Hebei Province [J]. Crops, 2025, 41(3): 141-148.
[3] Wang Yi, Ren Yongfu, Zhang Zhengpeng, Ding Defang, Zhang Jing, Liu Yihong, Sun Duoxin, Chen Guangrong. The Effects of Different Covering Materials on Soil Environment and Maize Yield in Hexi Irrigation Area [J]. Crops, 2025, 41(3): 149-155.
[4] Yang Tianxu, Li Jincheng, Huang Ruiyin, Deng Wenjun, Wang Jun, Wang Wei, Cai Yixia. Regulation Effects of Nitrogen Application Rate and Basal-Topdressing Ratio on Nicotine Synthesis and Key Enzyme Activities of Flue-Cured Tobacco [J]. Crops, 2025, 41(3): 156-164.
[5] Cao Zhengnan, Zhao Zhendong, Hu Bo, Yu Han, Ning Xiaohai, Zhao Zeqiang, Cao Liyong. Effects of Nitrogen Fertilizer and Promoting Rot Bacteria Fertilizer on Decomposition Effect of Returning Rice Straw to Field and Yield in Cold Regions [J]. Crops, 2025, 41(3): 172-177.
[6] Hou Nan, Wu Fengjie, Qi Xiangkun, Wang Yufeng, Yang Kejun, Fu Jian. Effects of Different Nitrogen Application Levels on Carbon Metabolism of Waxy Maize during Filling Period in Black Soil Area [J]. Crops, 2025, 41(3): 178-184.
[7] Zhu Jindi, Zhu Xuegang, Du Wenqing, Qiu Tuoyu, Zhao Xinbin. Effects of Chemical Fertilizer Reduction Combined with Organic Fertilizer Application on Photosynthetic Characteristics, Quality and Yield of Tomatoes Cultivated in Facilities [J]. Crops, 2025, 41(3): 185-189.
[8] Li Hu, Huang Qiuyao, Wu Zishuai, Liu Guanglin, Chen Chuanhua, Luo Qunchang, Zhu Qinan. Effects of Planting Density and Nitrogen Application Rate on Yield and Rice Quality of High-Quality Conventional Rice Guiyu 12 [J]. Crops, 2025, 41(3): 195-201.
[9] Lan Xiu, Li Hengrui, He Hongliang, Ma Xianhua, Huang Xiaojuan, Li Tianyuan, Wei Haiqiu, Jiang Qingmei, Ruan Lixia, Yang Haixia, Liu Bingji, Tang Danfeng. Effects of Intercropping of Sugarcane and Platostoma palustre on Crop Yield, Quality and Economic Benefit [J]. Crops, 2025, 41(3): 202-209.
[10] Yang Zepeng, Wan Kejun, Zheng Shenghua, Ao Yuqin, Ma Mingkun, Wan Xue, Li Shanshan, Song Xin, Wang Changtao, Chen Shanghong, Liu Dinghui, Chen Honglin. Effects of Nitrogen Fertilizer and Seeding Amount Configuration on Yield Formation of Rapeseed by Aerial Seeding [J]. Crops, 2025, 41(3): 225-232.
[11] Liang Hui, Zhang Jianxin, Xue Lihua, Jia Keke. Effects of Drip Irrigation Amount on Root Growth and Yield of Xinnongdou 2 under the Condition of the Postpone of Water and Nitrogen [J]. Crops, 2025, 41(3): 233-240.
[12] Wang Heya, Luo Jingjing, Meng Ling, Ai Haifeng, Wang Bin, Li Huaisheng, Xu Jingpeng, Xu Xiangyang. Yield Sensitivity Analysis of Edible Sunflower Varieties in Ta'e Basin [J]. Crops, 2025, 41(3): 30-37.
[13] Mao Shunxin, Xiao Wuwei, Zhang Zuolin, Huang Jiada, Wang Fei, Huang Jianliang, Peng Shaobing, Cui Kehui. Effects of Different Irrigation Patterns and Fertilizer Managements on the Growth of Axillary Buds and Yield Formation of Ratoon Season in Ratoon Rice [J]. Crops, 2025, 41(3): 92-101.
[14] Ren Yongfu, Li Jiayi, Chen Guopeng, Pu Tian, Chen Hong, Wang Xiaochun. Effects of Different Planting Patterns on the Yield and Efficiency of Maize in Strip Intercropping System [J]. Crops, 2025, 41(2): 101-108.
[15] Tian Wenqiang, Wang Hongyi, Nie Lingfan, Sun Ganggang, Zhang Jun, Zhang Qiangbin, Yu Shan, Li Jiahao, Zhang Jinshan, Shi Shubing. The Effects of Sowing Date and Sowing Rate on the Growth, Dry Matter Accumulation and Yield of Extremely Late-Sown Wheat Population [J]. Crops, 2025, 41(2): 115-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!