Crops ›› 2025, Vol. 41 ›› Issue (3): 92-101.doi: 10.16035/j.issn.1001-7283.2025.03.013

Previous Articles     Next Articles

Effects of Different Irrigation Patterns and Fertilizer Managements on the Growth of Axillary Buds and Yield Formation of Ratoon Season in Ratoon Rice

Mao Shunxin(), Xiao Wuwei, Zhang Zuolin, Huang Jiada, Wang Fei, Huang Jianliang, Peng Shaobing, Cui Kehui()   

  1. National Key Laboratory of Crop Genetic Improvement / Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River / College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2024-02-29 Revised:2024-03-20 Online:2025-06-15 Published:2025-06-03

Abstract:

This study investigated the effects of water and fertilizer management on the growth of ratoon buds and ratoon crop yield using the rice variety Liangyou 6326. Three irrigation patterns (conventional flooding irrigation, alternate wetting and moderate soil drying, alternate wetting and severe soil drying) and three fertilizer treatments (no application of bud-promoting fertilizer, NBF; application of bud-promoting fertilizer, BF; and application of slow-release fertilizer, SRF) were implemented. The results indicated that different irrigation patterns had no significant effect on the yields of the first season and the ratoon season. In 2020, BF and SRF treatments increased the ratoon crop yields by 37.9% and 28.0%, respectively. In 2019, BF treatment increased the yield by 28.9%, while SRF treatment had no significant effect. The increase in yield was primarily attributed to the increase in the number of effective panicles. The growth of ratoon buds was predominantly influenced by fertilizer treatment, with no significant interaction between irrigation patterns and fertilizer treatment. Compared with the NBF treatment, BF treatment significantly increased the bud length, number of buds, bud dry weight, and ratooning ability on the uppermost internodes across all three irrigation patterns, with average increase of 32.8%, 33.6%, 139.8%, and 17.4%, respectively. SRF treatment increased these growth parameters by 13.6%, 3.7%, 54.4%, and 13.5%, respectively. Both BF and SRF treatments significantly increased the nitrogen contents of rice stubble and ratoon season, as well as the dry matter accumulation during the ratoon season. These findings suggest that the application of bud-promoting fertilizer and slow-release fertilizer can enhance ratoon bud germination and growth, increase ratooning ability, and ultimately improve ratoon crop yield by increasing nitrogen accumulation in stubble and the ratoon crop. Therefore, the rational application of either bud-promoting fertilizer or slow-release fertilizer is essential for maintaining high ratoon crop yield.

Key words: Ratoon rice, Yield, Axillary bud, Fertilizer management, Nitrogen accumulation, Slow-release fertilizer

Table 1

Yield and its components of the first-season rice under different water and fertilizer treatments"

年份
Year
灌溉模式
Irrigation
pattern
肥料处理
Fertilizer
treatment
产量
Yield
(t/hm2)
有效穗数
Effective panicle
number (/m2)
千粒重
1000-grain
weight (g)
结实率
Seed-setting
rate (%)
每穗颖花数
Spikelets
per panicle
颖花数
Spikelet number
(×103/m2)
2019 CI NBF 8.01ab 259.7a 27.7abc 85.5ab 124.7a 32.3a
BF 7.77ab 250.0a 26.7c 84.3b 131.1a 32.8ab
SRF 8.48ab 245.8a 28.4ab 83.8b 131.7a 32.1ab
平均 8.09A 251.8A 27.6A 84.5B 129.2A 32.4A
WMD NBF 7.52ab 241.0a 27.7bc 88.4a 116.1a 28.0ab
BF 7.29b 256.9a 27.5bc 87.4ab 112.2a 28.8ab
SRF 8.67a 268.8a 28.8a 87.1ab 114.5a 30.6a
平均 7.83A 255.6A 28.0A 87.6A 114.3B 29.1A
WSD NBF 7.88ab 245.8a 27.7abc 85.6ab 119.0a 29.1b
BF 7.41ab 243.8a 28.1abc 89.2a 116.0a 28.3ab
SRF 8.25ab 258.3a 28.0abc 87.3ab 128.3a 33.4ab
平均 7.85A 249.3A 27.9A 87.4A 121.1AB 30.3A
2020 CI NBF 7.82a 249.2a 25.9ab 86.5a 123.3a 30.7a
BF 7.74a 258.3a 25.3b 82.7a 130.7a 33.8a
SRF 7.95a 266.7a 26.2ab 82.1a 123.9a 33.3a
平均 7.84A 258.1A 25.8A 83.8A 126.0A 32.6A
WMD NBF 7.83a 249.2a 26.0ab 86.5a 141.7a 35.1a
BF 7.85a 250.8a 25.8ab 84.9a 130.1a 32.6a
SRF 7.58a 245.0a 26.9a 87.4a 130.8a 31.9a
平均 7.76A 248.3AB 26.2A 86.2A 134.2A 33.2A
WSD NBF 7.91a 235.0a 25.8ab 86.4a 135.4a 31.9a
BF 7.49a 230.0a 26.3ab 88.9a 125.4a 28.8a
SRF 7.28a 250.8a 26.2ab 83.6a 122.2a 30.7a
平均 7.56A 238.6B 26.1A 86.3A 127.6A 30.5A
方差分析ANOVA 年(Y) ns ns * ns ns ns
灌溉模式(I) ns ns ns * ns ns
肥料处理(F) * ns *** ns ns ns
Y×I ns ns ns ns ns ns
Y×F ** ns ns ns ns ns
I×F ns ns * ns ns ns
Y×I×F ns ns ns ns ns ns

Table 2

Yield and its components of the ratoon season under different water and fertilizer treatments"

年份
Year
灌溉模式
Irrigation
pattern
肥料处理
Fertilizer
treatment
产量
Yield
(t/hm2)
有效穗数
Effective panicle
number (/m2)
千粒重
1000-grain
weight (g)
结实率
Seed-setting
rate (%)
每穗颖花数
Spikelets
per panicle
颖花数
Spikelet number
(×103/m2)
再生力
Ratooning
ability
2019 CI NBF 3.91c 326.7c 24.7ab 75.5abc 63.3b 20.7bc 1.26c
BF 5.10a 415.0a 23.9b 77.9a 67.2ab 27.9a 1.66a
SRF 4.05bc 342.5bc 24.9a 74.6abc 64.6a 22.2bc 1.40abc
平均 4.35A 361.4A 24.5A 76.0A 65.0A 23.6A 1.44A
WMD NBF 3.46c 318.3c 24.3ab 74.9abc 62.6b 19.9c 1.33c
BF 4.75ab 387.5ab 23.9b 73.2abc 64.3b 24.9ab 1.51abc
SRF 3.93c 372.5abc 24.3ab 71.2bc 61.8b 23.0bc 1.39abc
平均 4.05A 359.4A 24.2A 73.1A 62.9A 22.6A 1.41A
WSD NBF 4.03bc 364.2abc 24.2ab 70.5bc 64.9b 23.7abc 1.48abc
BF 4.85a 397.5ab 23.8b 77.5ab 70.7a 28.1a 1.63ab
SRF 3.36c 351.7bc 24.0ab 70.0c 65.9ab 23.1bc 1.37bc
平均 4.08A 371.1A 24.0A 72.7A 67.2A 25.0A 1.50A
2020 CI NBF 3.44bcd 465.0bcd 23.1ab 58.3b 75.9a 35.1bc 1.86a
BF 4.13ab 521.7ab 23.5a 61.3ab 78.5a 41.1abc 2.05a
SRF 3.96ab 556.7a 23.2ab 58.7ab 82.1a 45.6a 2.10a
平均 3.85A 514.4A 23.3A 59.4A 78.9A 40.6A 2.00A
年份
Year
灌溉模式
Irrigation
pattern
肥料处理
Fertilizer
treatment
产量
Yield
(t/hm2)
有效穗数
Effective panicle
number (/m2)
千粒重
1000-grain
weight (g)
结实率
Seed-setting
rate (%)
每穗颖花数
Spikelets
per panicle
颖花数
Spikelet number
(×103/m2)
再生力
Ratooning
ability
WMD NBF 2.67d 434.2cd 23.1ab 59.6ab 81.3a 35.2bc 1.74a
BF 4.31a 541.7ab 23.4ab 60.0ab 77.6a 42.1ab 2.16a
SRF 4.03ab 490.8abcd 23.1ab 59.1ab 81.9a 40.1ab 2.01a
平均 3.67A 488.9A 23.2A 59.6A 80.3A 39.1A 1.97A
WSD NBF 3.09cd 420.8d 22.9b 60.8ab 81.6a 34.3c 1.81a
BF 4.22a 488.3abcd 23.1ab 63.1a 85.8a 41.8ab 2.14a
SRF 3.77abc 513.3abc 23.2ab 59.9ab 80.8a 41.4ab 2.05a
平均 3.70A 474.2A 23.1A 61.3A 82.7A 39.1A 2.00A
方差分析
ANOVA
年(Y) * *** * *** *** *** ***
灌溉模式(I) ns ns ns ns * ns ns
肥料处理(F) *** *** ns ** ns *** ***
Y×I ns ns * * ns *** ns
Y×F *** ns ns ns ns ns ns
I×F ns ns ns ns ns ns ns
Y×I×F ns ns ns ns ns ns ns

Fig.1

Dynamic changes of axillary bud length under different water and fertilizer treatments HD-20, HD-30 (MD), and MD-10 represent 20 days after heading of first-season rice, 30 days after heading of first-season rice (mature stage of first-season rice) and 10 days after harvest of first-season rice. Vertical line with figure indicates the difference significance among different nitrogen fertilizer applications at the same stage under the same water treatment at 0.05 probability level according to the least significant difference test at P < 0.05 probability level."

Table 3

Effects of different water and fertilizer treatments on the growth of axillary buds at 10 days after harvest of the first-season"

灌溉模式
Irrigation pattern
肥料处理
Fertilizer treatment
芽长Bud length (cm) 活芽数Bud number (/m2) 芽干重Bud dry weight (g/m2)
D2 D3 D2 D3 D2 D3
CI NBF 38.5a 34.1b 195.5c 172.2bc 59.7bcd 34.6d
BF 45.3a 46.2a 266.1a 236.0ab 109.7ab 92.8abc
SRF 38.2a 36.0b 224.9abc 175.9bc 77.7abcd 42.0d
平均 40.7A 38.8A 228.81A 194.7A 82.4A 56.4B
WMD NBF 24.5b 34.2b 199.0c 187.1bc 32.7d 44.6d
BF 42.3a 47.1a 247.7abc 232.9ab 111.1a 113.1a
SRF 36.8a 40.1ab 205.6bc 167.8c 60.8abcd 61.7bcd
平均 34.5A 40.5A 217.4A 195.9A 68.2A 73.1AB
WSD NBF 34.9a 35.0b 188.7c 199.6bc 46.2cd 56.3cd
BF 39.9a 46.5a 263.8ab 279.0a 107.1ab 123.3a
SRF 34.1b 43.4ab 217.4abc 192.8bc 82.7abc 98.2ab
平均 36.3A 41.6A 223.3A 223.8A 78.7A 92.6A
方差分析ANOVA 灌溉模式(I) ns ns ns ns ns ns
肥料处理(F) ** ** ** ** ** **
I×F ns ns ns ns ns ns

Table 4

Dry matter and nitrogen accumulation in the ratoon season under different water and fertilizer treatments"

灌溉模式
Irrigation
pattern
肥料处理
Fertilizer
treatment
头季
稻桩干重
Stubble dry
weight of
first-season
(t/hm2)
再生季
地上部干重
Total dry
weight of
ratoon season
(t/hm2)
再生季当季
干物质积累量
Dry matter
accumulation
during ratoon
season (t/hm2)
头季稻桩
氮素浓度
Stubble N
concentration
(%)
头季稻桩
氮素积累
Stubble
N
(kg/hm2)
再生芽
氮素浓度
Ratoon
bud N
concentration
(%)
再生芽
氮素含量
Ratoon
bud N
content
(kg/hm2)
再生季当季
氮素积累量
N uptake
during
ratoon season
(kg/hm2)
再生季地上部
氮素积累量
Total N uptake
of ratoon
season
(kg/hm2)
CI NBF 3.26b 13.25cd 9.99c 0.85bcd 27.5c 2.13abc 20.2d 68.7a 96.3b
BF 3.92ab 14.39bc 10.47b 1.08ab 42.2ab 1.55c 31.0abc 73.9a 116.1a
SRF 4.22ab 16.38a 12.17a 0.98abcd 40.2b 2.15abc 24.1bcd 71.6a 111.8a
平均 3.80A 14.67A 10.88A 0.97A 36.6A 1.94A 25.1A 71.4A 108.0A
WMD NBF 3.62ab 12.99d 9.37c 0.83cd 29.6c 2.68a 20.1d 63.7a 93.3b
BF 4.42a 15.13b 10.71b 1.06ab 46.1a 1.80bc 39.5ab 68.6a 114.7a
SRF 3.99ab 14.54bc 10.55bc 1.09ab 43.3ab 2.39ab 29.2abc 67.0a 110.1a
平均 4.01A 14.22A 10.21A 0.99A 39.6A 2.29A 29.6A 66.4A 106.0A
WSD NBF 3.70ab 12.82d 9.12c 0.77d 28.5c 2.12abc 22.6cd 66.6a 95.1b
BF 3.84ab 14.90b 11.06b 1.11a 41.7b 1.90abc 41.3a 72.4a 114.0a
SRF 3.98ab 14.96b 10.97b 1.02abc 40.5b 2.13abc 37.8abc 72.2ab 112.7a
平均 3.84A 14.23A 10.38A 0.97A 36.9A 2.05 33.9A 70.4A 107.3A
方差分析
ANOVA
灌溉模式(I) ns ns ns ns ns ns ns ns ns
肥料处理(F) ns ** ** * * ** * **
I×F ns ns ns ns ns ns ns ns ns

Table 5

The correlations among bud growth, nitrogen and dry matter accumulation and grain yield of the ratoon season"

指标
Index
芽长
Bud
length
活芽数
Bud
number
芽重
Bud dry
weight
再生力
Ratooning
ability
再生季产量
Grain yield
of the
ratoon crops
头季收获时
稻桩干重
Stubble dry
weight
再生季当季积累干重
Dry matter accumulation
during the ratoon season
再生季总干重
Total dry
weight of the
ratoon crops
稻桩氮浓度Stubble N concentration 0.801** 0.650 0.794* 0.880** 0.905*** 0.624 0.675* 0.717*
稻桩氮素含量Stubble N content 0.777* 0.590 0.783* 0.913*** 0.891** 0.850*** 0.698* 0.801**
芽氮素浓度Bud N concentration -0.904*** -0.744* -0.778* -0.640 -0.700* -0.335 -0.304 -0.342
芽氮素含量Bud N content 0.772* 0.759* 0.940*** 0.815** 0.759* 0.591 0.459 0.538
再生季当季氮素积累量
N uptake during the ratoon season
0.742* 0.613 0.688* 0.733* 0.724* 0.307 0.686* 0.633
再生季总氮积累
Total N uptake of the ratoon crops
0.854** 0.666* 0.840** 0.954*** 0.934*** 0.755* 0.775* 0.834**
头季收获后稻桩干重
Stubble dry weight
0.524 0.378 0.566 0.761* 0.655* 0.628 0.788*
再生季当季积累干重
Dry matter accumulation during the
ratoon season
0.467 0.318 0.453 0.832** 0.742* 0.628 0.974***
再生季总干重
Total dry weight of the ratoon crops
0.523 0.362 0.525 0.880** 0.779*
再生季产量
Grain yield of the ratoon crops
0.905*** 0.641 0.809** 0.962***
再生力Ratooning ability 0.838** 0.661* 0.835**
[1] 彭少兵. 对转型时期水稻生产的战略思考. 中国科学:生命科学, 2014, 44(8):845-850.
[2] 林文雄, 翁佩莹, 林文芳, 等. 中国机收再生稻研究现状与展望. 应用生态学报, 2024, 35(3):827-836.
doi: 10.13287/j.1001-9332.202403.008
[3] Peng S B, Zheng C, Yu X. Progress and challenges of rice ratooning technology in China. Crop and Environment, 2023, 2(1):5-11.
[4] 姜照伟, 卓传营, 林文, 等. 再生稻产量构成因素分析. 福建稻麦科技, 2002(2):8-9.
[5] 周文新. 不同类型再生稻生育特性及源库关系比较研究. 长沙:湖南农业大学, 2008.
[6] 伍先群, 林席跃, 雷正平, 等. 赣南地区机收再生稻杂交籼稻品种再生能力及丰产性研究. 安徽农业科学, 2023, 51(24):31-34.
[7] 杨晨, 郑常, 袁珅, 等. 再生稻肥料管理对不同品种产量和品质的影响. 中国水稻科学, 2022, 36(1):65-76.
doi: 10.16819/j.1001-7216.2022.210315
[8] 郑常. 重晒田水分管理和预留机收行种植方式对机收再生稻产量和品质的提升效应. 武汉:华中农业大学, 2022.
[9] Wang F, Cui K H, Huang J L. Progress and challenges of rice ratooning technology in Hubei Province, China. Crop and Environment, 2023, 2(1):12-16.
[10] Bouman B, Yang X G, Wang H Q, et al. Performance of aerobic rice varieties under irrigated conditions in North China. Field Crops Research, 2006, 97(1):53-65.
[11] Yang J C, Liu K, Wang Z Q, et al. Water-saving and high-yielding irrigation for lowland rice by controlling limiting values of soil water potential. Journal of Integrative Plant Biology, 2007, 49(10):1445-1454.
doi: 10.1111/j.1672-9072.2007.00555.x
[12] Yao F X, Huang J L, Cui K H, et al. Agronomic performance of high-yielding rice variety grown under alternate wetting and drying irrigation. Field Crops Research, 2012,126:16-22.
[13] 吴文彬, 黄友钦, 王贵学, 等. 土壤水分对再生稻头季后期稻株光合和呼吸生理的影响研究. 西南农业大学学报, 1995, 17(6):486-488.
[14] 范可珍. 天优3301作再生稻高产栽培技术. 福建稻麦科技, 2012, 30(2):30-32.
[15] 徐富贤, 洪松, 熊洪. 促芽肥与杂交中稻再生力关系及其作用机理. 作物学报, 1997, 23(3):311-317.
[16] 徐富贤, 熊洪, 张林, 等. 再生稻产量形成特点与关键调控技术研究进展. 中国农业科学, 2015, 48(9):1702-1717.
doi: 10.3864/j.issn.0578-1752.2015.09.04
[17] 夏桂龙, 欧阳建平, 柳开楼, 等. 促芽肥用量和留茬方式对赣东北地区再生稻产量和再生能力的影响. 中国稻米, 2016, 22(2):27-30.
[18] 习敏, 徐秀娟, 吴文革, 等. 促芽肥对再生稻准两优608产量和主要品质性状的影响. 中国稻米, 2018, 24(3):93-96.
doi: 10.3969/j.issn.1006-8082.2018.03.020
[19] 袁继超, 孙晓辉, 田彦华, 等. 再生稻需氮特性和分次施氮的研究. 作物学报, 1996, 22(3):345-352.
[20] 陈鸿飞, 张志兴, 林文雄. 促芽肥对水稻再生芽萌发生长过程蛋白质表达的影响. 中国农业生态学报, 2014, 22(12):1405-1413.
[21] 管康林, 陈耀武, 肖耀文. 再生稻生理研究初报. 中国农业科学, 1979, 12(3):23-30.
[22] 姜照伟, 林文雄, 李义珍, 等. 不同氮肥施用量对再生稻氮素吸收和分配的影响. 福建农业学报, 2003, 18(1):50-55.
[23] 郭晨. 缓/控释肥施用对作物产量、氮肥利用率及温室气体排放的影响. 武汉:华中农业大学, 2018.
[24] 余贵龙, 刘祥臣, 张强, 等. 不同缓释肥组配对豫南再生稻生长及产量的影响. 中国农学通报, 2023, 39(36):22-27.
doi: 10.11924/j.issn.1000-6850.casb2023-0024
[25] Ye Y S, Liang X Q, Chen Y X, et al. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use. Field Crops Research, 2013,144:212-224.
[26] Lampayan R M, Rejesus R M, Singleton G R, et al. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Research, 2015,170:95-108.
[27] Zheng C, Wang Y C, Yuan S, et al. Heavy soil drying during mid-to-late grain filling stage of the main crop to reduce yield loss of the ratoon crop in a mechanized rice ratooning system. The Crop Journal, 2022, 10(1):280-285.
[28] 崔璨, 陈基旺, 陈平平, 等. 不同水浆管理对再生稻产量与镉积累转运的影响. 杂交水稻, 2023, 38(2):135-141.
[29] 张绍文, 何巧林, 王海月, 等. 控制灌溉条件下施氮量对杂交籼稻F优498氮素利用效率及产量的影响. 植物营养与肥料学报, 2018, 24(1):82-94.
[30] 李经勇, 张洪松, 唐永群. 中国再生稻研究与应用. 南方农业, 2009, 3(3):88-92.
[31] 高欠清, 任孝俭, 翟中兵, 等. 头季穗肥和促芽肥对再生稻再生芽生长及产量形成的影响. 中国水稻科学, 2023, 37(4):405-414.
doi: 10.16819/j.1001-7216.2023.221002
[32] 黄友钦, 刘仕琳, 王贵学, 等. 伏旱期土壤水分对再生稻的影响. 西南农业大学学报, 1995, 17(6):481-485.
[33] 孙晓辉, 田彦华, 任天举. 促芽肥对杂交稻培育再生稻效果研究. 四川农业科技, 1982(3):1-4,7.
[34] 唐祖荫, 张征兰. 再生稻几个生态生理问题的研究. 湖北农业科学, 1991(5):1-5.
[35] 马均, 王化新, 孙晓辉, 等. 促芽肥15N在再生稻中的分配及其作用研究. 西南农业学报, 1992, 5(1):41-46.
[36] 林文雄, 陈鸿飞, 张志兴, 等. 再生稻产量形成的生理生态特性与关键栽培技术的研究与展望. 中国生态农业学报, 2015, 23(4):392-401.
[37] 曹小闯, 吴龙龙, 朱春权, 等. 不同灌溉和施肥模式对水稻产量、氮利用和稻田氮转化特征的影响. 中国农业科学, 2021, 54(7):1482-1498.
doi: 10.3864/j.issn.0578-1752.2021.07.013
[38] Yang J C, Zhang J H, Wang Z Q, et al. Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiology, 2001, 127(1):315-323.
doi: 10.1104/pp.127.1.315 pmid: 11553759
[39] Yang J C, Zhang J H, Wang Z Q, et al. Activities of starch hydrolytic enzymes and sucrose‐phosphate synthase in the stems of rice subjected to water stress during grain filling. Journal of Experimental Botany, 2001, 52(364):2169-2179.
pmid: 11604456
[40] 张桂莲, 屠乃美, 张顺堂. 不同杂交稻组合再生特性的比较. 湖南农业大学学报(自然科学版), 2002, 28(5):364-368.
[41] Yang J C, Zhang J H. Crop management techniques to enhance harvest index in rice. Journal of Experimental Botany, 2010, 61(12):3177-3189.
doi: 10.1093/jxb/erq112 pmid: 20421195
[42] Wang Y C, Zheng C, Xiao S, et al. Agronomic responses of ratoon rice to nitrogen management in central China. Field Crops Research, 2019,241:107569.
[1] He Yunxia, Ma Jianhui, Zhang Daijing, Liu Donghua, Chao Xiaoyan, Chen Huiping, Li Chunxi. Study on the Effect of Different Nitrogen Fertilizer Synergists on Reducing Gaseous Nitrogen Loss and Increasing Yield in Wheat Field of Northern Henan [J]. Crops, 2025, 41(3): 108-115.
[2] Wang Yi, Ren Yongfu, Zhang Zhengpeng, Ding Defang, Zhang Jing, Liu Yihong, Sun Duoxin, Chen Guangrong. The Effects of Different Covering Materials on Soil Environment and Maize Yield in Hexi Irrigation Area [J]. Crops, 2025, 41(3): 149-155.
[3] Cao Zhengnan, Zhao Zhendong, Hu Bo, Yu Han, Ning Xiaohai, Zhao Zeqiang, Cao Liyong. Effects of Nitrogen Fertilizer and Promoting Rot Bacteria Fertilizer on Decomposition Effect of Returning Rice Straw to Field and Yield in Cold Regions [J]. Crops, 2025, 41(3): 172-177.
[4] Hou Nan, Wu Fengjie, Qi Xiangkun, Wang Yufeng, Yang Kejun, Fu Jian. Effects of Different Nitrogen Application Levels on Carbon Metabolism of Waxy Maize during Filling Period in Black Soil Area [J]. Crops, 2025, 41(3): 178-184.
[5] Zhu Jindi, Zhu Xuegang, Du Wenqing, Qiu Tuoyu, Zhao Xinbin. Effects of Chemical Fertilizer Reduction Combined with Organic Fertilizer Application on Photosynthetic Characteristics, Quality and Yield of Tomatoes Cultivated in Facilities [J]. Crops, 2025, 41(3): 185-189.
[6] Li Hu, Huang Qiuyao, Wu Zishuai, Liu Guanglin, Chen Chuanhua, Luo Qunchang, Zhu Qinan. Effects of Planting Density and Nitrogen Application Rate on Yield and Rice Quality of High-Quality Conventional Rice Guiyu 12 [J]. Crops, 2025, 41(3): 195-201.
[7] Lan Xiu, Li Hengrui, He Hongliang, Ma Xianhua, Huang Xiaojuan, Li Tianyuan, Wei Haiqiu, Jiang Qingmei, Ruan Lixia, Yang Haixia, Liu Bingji, Tang Danfeng. Effects of Intercropping of Sugarcane and Platostoma palustre on Crop Yield, Quality and Economic Benefit [J]. Crops, 2025, 41(3): 202-209.
[8] Wei Mengyang, Luo Zhenbao, He Shuai, Ma Qian, Ma Guankai, Xi Feihu, Luo Dongsheng, Jing Yanqiu, Yu Qiwei, Wang Maoxian. Effects of Interaction between Photosynthetic Bacteria and the Number of Retained Leaves on Physiological Metabolism, Chemical Quality, Yield and Quality of Flue-Cured Tobacco [J]. Crops, 2025, 41(3): 210-217.
[9] Yang Zepeng, Wan Kejun, Zheng Shenghua, Ao Yuqin, Ma Mingkun, Wan Xue, Li Shanshan, Song Xin, Wang Changtao, Chen Shanghong, Liu Dinghui, Chen Honglin. Effects of Nitrogen Fertilizer and Seeding Amount Configuration on Yield Formation of Rapeseed by Aerial Seeding [J]. Crops, 2025, 41(3): 225-232.
[10] Liang Hui, Zhang Jianxin, Xue Lihua, Jia Keke. Effects of Drip Irrigation Amount on Root Growth and Yield of Xinnongdou 2 under the Condition of the Postpone of Water and Nitrogen [J]. Crops, 2025, 41(3): 233-240.
[11] Wang Heya, Luo Jingjing, Meng Ling, Ai Haifeng, Wang Bin, Li Huaisheng, Xu Jingpeng, Xu Xiangyang. Yield Sensitivity Analysis of Edible Sunflower Varieties in Taʼe Basin [J]. Crops, 2025, 41(3): 30-37.
[12] Ren Yongfu, Li Jiayi, Chen Guopeng, Pu Tian, Chen Hong, Wang Xiaochun. Effects of Different Planting Patterns on the Yield and Efficiency of Maize in Strip Intercropping System [J]. Crops, 2025, 41(2): 101-108.
[13] Tian Wenqiang, Wang Hongyi, Nie Lingfan, Sun Ganggang, Zhang Jun, Zhang Qiangbin, Yu Shan, Li Jiahao, Zhang Jinshan, Shi Shubing. The Effects of Sowing Date and Sowing Rate on the Growth, Dry Matter Accumulation and Yield of Extremely Late-Sown Wheat Population [J]. Crops, 2025, 41(2): 115-122.
[14] Zhao Lingling, Li Guifang, Cheng Chu, Zheng Mingjie, Hu Min, Zhu Jianfeng, Shen Ayi, Shen Aga, Wang Junzhen, Shao Meihong. Preliminary Report on Introduction Experiment of New Buckwheat Varieties in Zhejiang Province [J]. Crops, 2025, 41(2): 86-92.
[15] Ma Yingchen, Wang Jiatong, Feng Yanfei, Ma Haoxiong, Ren Xuejun, Guo Zhenqing, Li Yun, Han Yucui, Lin Xiaohu. Impacts of the Residual Effects of the Combined Application of Compound Fertilizers and Microbial Inoculant on Soil Physicochemical Properties and Quality of Foxtail Millet [J]. Crops, 2025, 41(2): 141-148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!