Crops ›› 2025, Vol. 41 ›› Issue (2): 101-108.doi: 10.16035/j.issn.1001-7283.2025.02.014

Previous Articles     Next Articles

Effects of Different Planting Patterns on the Yield and Efficiency of Maize in Strip Intercropping System

Ren Yongfu1(), Li Jiayi1, Chen Guopeng2, Pu Tian2, Chen Hong2, Wang Xiaochun2()   

  1. 1Agricultural Technology Promotion Center in Liangzhou District, Wuwei 733000, Gansu, China
    2College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
  • Received:2024-03-06 Revised:2024-04-24 Online:2025-04-15 Published:2025-04-16

Abstract:

This study systematically investigated the impact of various planting patterns on the yield and its components, material accumulation and distribution, photosynthetic potential, nitrogen fertilizer utilization efficiency, light energy utilization efficiency, and heat utilization efficiency of intercropping maize. The objective was to probe into the differences on yield and efficiency under different planting patterns. Field experiments were conducted at three sites by using Chengdan 30 as the experimental material, with four maize-soybean intercropping planting patterns established: basic production (CK), farmers practice (FC), high-yielding and high-efficiency cultivation (HC), super high-yielding cultivation (SC). The results revealed significant differences on the yield of maize under different cultivation patterns. SC and HC demonstrated a notable increase in yield by 22.49% and 18.18%, respectively, compared to FC, the increase in production was the largest in Pingchang site (34.72%). An analysis of yield composition factors indicated that, in comparison with FC, the effective ears of HC increased significantly by 4.44%, and the 1000-grain weight increased by 4.49%. Moreover, compared with HC, SC exhibited 18.33% increase in effective ears but 10.40% reduction in grains per spike. Dry matter accumulation and photosynthetic potential followed the order: SC > HC > FC > CK. Stem and leaf dry matter transport contributed more significantly in SC than in other cultivation models. Compared with FC, partial factor productivity of nitrogen of HC significantly increased in productivity by 8.30% and an 11.37% rise in nitrogen utilization efficiency. Regarding resource utilization efficiency, SC exhibited a significant increase in light and heat utilization efficiency by 11.48% and 18.78%, respectively, compared to FC. Among the three experimental points, Pingchang had a greater potential for yield increase. Based on the FC reasonable increase maize planting density, optimization of nitrogen application and overall cultivation management can further tap into the yield potential of intercropping maize in the southwest region, achieving the goal of increasing yield and efficiency.

Key words: Maize-soybean strip intercropping, Planting patterns, Yield, Efficiency, Difference

Table 1

Natural conditions in text sites"

地点
Site
有效积温
Effective accumulated
temperature (℃)
降水量
Rainfall
(mm)
辐射量
Radiation amount
(MJ/m2)
仁寿Renshou 2879.1 744.8 1116.4
乐至Lezhi 2672.6 767.3 1297.4
平昌Pingchang 2749.3 560.4 1312.2

Table 2

The design of field experiment"

处理
Treatment
密度
(株/hm2)
Density
(plant/hm2)
施肥量Fertilization rate (kg/hm2) 其他措施
Other measures
底肥
Basal fertilizer
苗肥
Seedling fertilizer
拔节肥
Jointing fertilizer
穗肥
Earing fertilizer
N P2O5 KCl N Zn N P2O5 KCl N P2O5 KCl
基础栽培(不
施肥)CK
52 500 0 0 0 0 0 0 0 0 0 0 0 雨养为主
农户栽培FC 52 500 120 33.6 38.4 120 33.6 38.4
高产高效HC 67 500 90 105 150 60 30 120 雨养为主,9叶期喷施矮丰控高防倒
超高产SC

67 500

150

150

225

60

30

180

33.6

38.4

150

150

225

播种前深施腐熟猪粪1500 kg/hm2
翻耕,水肥一体化,9叶期喷施矮丰
控高防倒

Table 3

Maize and soybean sowing and harvesting dates 月-日month-day"

年份
Year
项目
Item
仁寿Renshou 乐至Lezhi 平昌Pingchang
玉米Maize 大豆Soybean 玉米Maize 大豆Soybean 玉米Maize 大豆Soybean
2021 播种 03-30 06-11 03-28 06-10 03-26 06-08
收获 08-01 10-08 07-28 10-05 07-20 10-03
2022 播种 04-09 06-16 03-28 06-11 03-21 06-10
收获 08-05 10-12 08-01 10-08 07-19 10-05

Table 4

Yields of maize under different planting patterns"

年份
Year
处理
Treatment
仁寿Renshou 乐至Lezhi 平昌Pingchang
产量
Yield
(kg/hm2)
产量差Yield gap 产量
Yield
(kg/hm2)
产量差Yield gap 产量
Yield
(kg/hm2)
产量差Yield gap
逐级比较
Step by step
comparison
与农户比较
Compared
with FC
逐级比较
Step by step
comparison
与农户比较
Compared
with FC
逐级比较
Step by step
comparison
与农户比较
Compared
with FC
2021 基础栽培 4055.8d 7205.7c 5967.4c
农户栽培 7594.1c 3538.3a 9305.2b 2099.5a 6372.3b 4040.9a
高产高效 9519.5b 1925.4b 1925.4b 10 274.2a 969.0b 969.0b 9483.2a 3110.9b 3110.9b
超高产 10 618.3a 1098.8c 3024.2a 10 375.9a 101.7c 1070.7a 9630.1a 146.9c 3257.8a
2022 基础栽培 6371.5c 7187.6c 5141.9c
农户栽培 8146.9b 1775.4a 7502.3b 614.7a 6353.5b 1411.6a
高产高效 8779.2ab 632.3b 632.3b 7640.7a 138.4b 138.4b 7540.4a 1186.9b 1186.9b
超高产 9021.5a 242.3c 874.6a 7774.2a 133.5c 271.9a 7783.5a 243.1c 1430.0a

Table 5

Yield components of maize under different planting patterns"

年份
Yield
处理
Treatment
仁寿Renshou 乐至Lezhi 平昌Pingchang
有效穗数
Effective ear
(×103/hm2)
穗粒数
Grains
per ear
千粒重
1000-grain
weight (g)
有效穗数
Effective ear
(×103/hm2)
穗粒数
Grains
per ear
千粒重
1000-grain
weight (g)
有效穗数
Effective ear
(×103/hm2)
穗粒数
Grains
per ear
千粒重
1000-grain
weight (g)
2021 基础栽培 42.5d 356.0c 268.0c 50.7b 546.0c 260.3c 49.1b 462.0b 262.9c
农户栽培 48.5c 507.0b 308.8a 50.0b 630.0a 295.7a 50.0b 454.0b 281.0b
高产高效 62.5b 503.0b 302.7b 63.8a 585.0b 275.3b 66.1a 486.0a 295.2a
超高产 66.1a 530.0a 303.2b 64.2a 585.0b 276.4b 66.4a 486.0a 298.5a
2022 基础栽培 46.0d 574.7b 240.9c 45.8c 596.2a 263.3a 45.4c 408.1c 277.5b
农户栽培 51.7c 626.4a 251.6b 48.5bc 599.1a 258.0ab 48.1bc 476.5ab 277.3b
高产高效 54.0b 618.4a 262.9a 51.6b 581.7ab 254.7b 48.8b 495.0a 312.3a
超高产 63.9a 559.8b 252.2b 53.1a 552.7b 265.0a 51.4a 493.4a 306.7ab

Fig.1

Dry matter accumulation of maize under different planting patterns Different lowercase letters are significantly different at P < 0.05 level. The same below."

Table 6

Distribution and transport of dry matter in maize under different planting patterns %"

器官
Organ
处理
Treatment
仁寿Renshou 乐至Lezhi 平昌Pingchang
分配率
Allocation rate
转运贡献率
Transfer
contribution
rate
分配率
Allocation rate
转运贡献率
Transfer
contribution
rate
分配率
Allocation rate
转运贡献率
Transfer
contribution
rate
开花期
Anthesis
成熟期
Maturation
开花期
Anthesis
成熟期
Maturation
开花期
Anthesis
成熟期
Maturation
茎秆Stem 基础栽培 50.37c 27.23a 8.49b 59.38a 25.50b 6.63c 50.46b 22.88b 8.20b
农户栽培 58.14a 22.98c 8.89b 59.92a 25.92b 6.82c 54.66a 24.68a 8.28b
高产高效 55.59b 24.46b 8.80b 54.77b 27.21a 8.18b 51.26b 23.73a 8.58b
超高产 56.29ab 26.08a 10.34a 52.07c 22.33c 9.09a 52.67ab 23.72a 9.69a
叶Leaf 基础栽培 49.63a 22.72a 4.79b 40.62c 17.50bc 6.47b 49.54a 20.39a 3.93b
农户栽培 41.86c 17.62b 4.58b 40.08c 17.27c 6.48b 45.34c 15.12c 4.04ab
高产高效 44.41b 16.97bc 5.04b 45.23b 18.92b 6.70b 48.74ab 17.22bc 4.68a
超高产 43.71bc 15.73c 7.92a 47.93a 20.97a 7.68a 47.33b 18.58b 4.88a

Fig.2

LAD of intercropping maize population under different planting patterns JS: jointing stage, SS: silking stage, MK: milky stage, MS: maturation stage."

Table 7

Nitrogen fertilizer utilization efficiency under different planting patterns kg/kg"

地点
Site
处理
Treatment
PFP PFP GNUE GNUE
逐级比较
Step by step comparison
与农户栽培比较
Compared with FC
逐级比较
Step by step comparison
与农户栽培比较
Compared with FC
仁寿Renshou 基础栽培
农户栽培 31.64b 32.95b
高产高效 35.26a 3.62a 3.62a 34.89a 1.94a 1.94a
超高产 23.60c -11.66b -8.04b 34.44a -0.45b 1.49b
乐至Lezhi 基础栽培
农户栽培 38.77a 40.92b
高产高效 38.05a -0.72a -0.72a 43.32a 2.40a 2.40a
超高产 23.06b -14.99b -15.71b 42.50a -0.82b 1.58b
平昌Pingchang 基础栽培
农户栽培 26.55b 31.67b
高产高效 35.28a 8.73a 8.73a 39.33a 7.66a 7.66a
超高产 21.40c -13.88b -5.15b 35.07a -4.26b 3.40b
平均Average 基础栽培
农户栽培 32.32b 35.18b
高产高效 36.19a 2.68a 2.68a 39.18a 4.00a 4.00a
超高产 22.69c -13.39b -9.63b 37.34a -1.84b 2.16b

Table 8

SUE of intercropping maize under different planting patterns"

地区
Site
处理
Treatment
SUE
(%)
SUE HUE
[kg/(hm2·℃)]
HUE
逐级比较
Step by step comparison
与农户栽培比较
Compared with FC
逐级比较
Step by step comparison
与农户栽培比较
Compared with FC
仁寿Renshou 基础栽培 1.14bc 2.27c
农户栽培 2.13b 0.99b 2.90b 0.63
高产高效 2.11b -0.02c -0.02b 3.12ab 0.22 0.22b
超高产 2.31a 0.20a 0.18a 3.21a 0.09 0.31a
乐至Lezhi 基础栽培 1.74b 4.38c
农户栽培 1.87ab 0.13b 4.98b 0.60
高产高效 1.70b -0.17c -0.17b 4.28c -0.70 -0.70b
超高产 1.97a 0.27a 0.10a 5.96a 1.68 0.98a
平昌Pingchang 基础栽培 1.27c 3.42c
农户栽培 1.48b 0.21a 4.43b 1.01b
高产高效 1.73ab 0.25a 0.25b 5.15a 0.72c 0.72b
超高产 1.84a 0.11b 0.36a 5.46a 0.31a 1.03a
平均Average 基础栽培 1.38c 3.36c
农户栽培 1.83b 0.44a 4.10b 0.75b
高产高效 1.85b 0.02c 0.02b 4.18b 0.08c 0.08b
超高产 2.04a 0.19b 0.21a 4.88a 0.69a 0.77a
[1] 高占义, 王浩. 中国粮食安全与灌溉发展对策研究. 水利学报, 2008, 39(11):1273-1277.
[2] 李少昆, 王崇桃. 中国玉米生产技术的演变与发展. 中国农业科学, 2009, 42(6):1941-1951.
[3] 王宜伦, 李潮海, 谭金芳, 等. 超高产夏玉米植株氮素积累特征及一次性施肥效果研究. 中国农业科学, 2010, 43(15):3151-3158.
[4] 李少昆, 赵久然, 董树亭, 等. 中国玉米栽培研究进展与展望. 中国农业科学, 2017, 50(11):1941-1959.
doi: 10.3864/j.issn.0578-1752.2017.11.001
[5] 任永福. 套作超高产玉米群体结构特征研究. 成都:四川农业大学, 2020.
[6] 杨锦忠, 陈明利, 张洪生, 等. 中国1950s到2000s玉米产量―密度关系的Meta分析. 中国农业科学, 2013, 46(17):3562-3570.
doi: 10.3864/j.issn.0578-1752.2013.17.004
[7] 陈立军, 唐启源. 玉米高产群体质量指标及其影响因素. 作物研究, 2008, 22(5):428-434.
[8] Duvick D N. The contribution of breeding to yield advances in maize (Zea mays L.). Advances in Agronomy, 2005, 86(5):83-145.
[9] Tollenaar M, Lee E A. Yield potential, yield stability and stress tolerance in maize. Field Crops Research, 2002, 75(2/3):161-169.
[10] Tollenaar M, Deen W, Echarte L, et al. Effect of crowding stress on dry matter accumulation and harvest index in maize. Agronomy Journal, 2006, 98(4):930-937.
[11] 朴琳, 任红, 展茗, 等. 栽培措施及其互作对北方春玉米产量及耐密性的调控作用. 中国农业科学, 2017, 50(11):1982-1994.
doi: 10.3864/j.issn.0578-1752.2017.11.004
[12] 赵杰. 不同栽培模式对夏玉米产量差及生理特性的影响. 泰安:山东农业大学, 2017.
[13] 魏珊珊, 王祥宇, 董树亭, 等. 株行距配置对高产夏玉米冠层结构及籽粒灌浆特性的影响. 应用生态学报, 2014, 25(2):441-450.
[14] 徐宗贵, 孙磊, 王浩, 等. 种植密度对旱地不同株型春玉米品种光合特性与产量的影响. 中国农业科学, 2017, 50(13):2463-2475.
doi: 10.3864/j.issn.0578-1752.2017.13.006
[15] 任永福, 陈国鹏, 蒲甜, 等. 玉米-大豆带状种植中套作高光效玉米窄行穗位叶光合特性对弱光胁迫的响应. 作物学报, 2019, 45(5):728-739.
doi: 10.3724/SP.J.1006.2019.83040
[16] 王崇桃, 李少昆. 作物产量差与玉米高产设计. 科技导报, 2012, 30(7):50-55.
[17] 梁志英. 不同管理模式下春玉米氮吸收与分配规律研究. 太原:山西大学, 2015.
[18] 张仁和, 胡富亮, 杨晓钦, 等. 不同栽培模式对旱地春玉米光合特性和水分利用率的影响. 作物学报, 2013, 39(9):1619-1627.
[19] 杨吉顺, 高辉远, 董树亭, 等. 种植密度和行距配置对超高产夏玉米群体光合特性的影响. 作物学报, 2010, 36(7):1226-1233.
[20] 马国胜, 薛吉全, 路海东, 等. 密度与氮肥对关中灌区夏玉米(Zea mays L.)群体光合生理指标的影响. 生态学报, 2015, 28(2):661-668.
[21] 翟立普, 刘巍巍, 曹国军, 等. 不同产量水平玉米干物质积累态势研究. 安徽农业科学, 2010, 38(30):16793-16795.
[22] 陈国平. 玉米的干物质生产与分配(综述). 玉米科学, 1994 (1):48-53.
[23] 陈小民. 栽培模式对春玉米产量及氮素、光能和水分利用效率的影响. 延吉:延边大学, 2018.
[24] 王寅, 高强, 冯国忠, 等. 吉林春玉米氮磷钾养分需求与利用效率研究. 植物营养与肥料学报, 2018, 24(2):306-315.
[25] 刘芬, 同延安, 王小英, 等. 渭北旱塬春玉米施肥效果及肥料利用效率研究. 植物营养与肥料学报, 2014, 20(1):48-55.
[26] 闫湘. 我国化肥利用现状与养分资源高效利用研究. 北京: 中国农业科学院, 2008.
[27] 刘占军, 谢佳贵, 张宽, 等. 不同氮肥管理对吉林春玉米生长发育和养分吸收的影响. 植物营养与肥料学报, 2011, 17(1):38-47.
[28] 战秀梅, 李亭亭, 韩晓日, 等. 不同施肥方式对春玉米产量、效益及氮素吸收和利用的影响. 植物营养与肥料学报, 2011, 17(4):861-868.
[29] 杨晓卡, 米慧玲, 高韩钰, 等. 不同栽培模式对冬小麦―夏玉米轮作系统产量、氮素累积和平衡的影响. 应用生态学报, 2016, 27(6):1935-1941.
[30] 任昊, 程乙, 刘鹏, 等. 不同栽培模式对夏玉米根系性能及产量和氮素利用的影响. 中国农业科学, 2017, 50(12):2270-2281.
doi: 10.3864/j.issn.0578-1752.2017.12.008
[31] 程建峰, 沈允钢. 作物高光效之管见. 作物学报, 2010, 36(8):1235-1247.
[32] 杨国敏, 孙淑娟, 周勋波, 等. 群体分布和灌溉对冬小麦农田光能利用的影响. 应用生态学报, 2009, 20(8):1868-1875.
[33] 崔晓朋, 郭家选, 刘秀位, 等. 不同种植模式对夏玉米光能利用率和产量的影响. 华北农学报, 2013, 28(5):231-238.
doi: 10.7668/hbnxb.2013.05.039
[34] 肖春华, 李少昆, 刘景德, 等. 北疆非传统小麦套种玉米对资源的高效利用分析. 作物杂志, 2004(4):12-14.
[35] 杨哲. 栽培措施对春玉米产量差和效率差的贡献及其调控机制. 呼和浩特:内蒙古农业大学, 2018.
[1] Tian Wenqiang, Wang Hongyi, Nie Lingfan, Sun Ganggang, Zhang Jun, Zhang Qiangbin, Yu Shan, Li Jiahao, Zhang Jinshan, Shi Shubing. The Effects of Sowing Date and Sowing Rate on the Growth, Dry Matter Accumulation and Yield of Extremely Late-Sown Wheat Population [J]. Crops, 2025, 41(2): 115-122.
[2] Zhao Lingling, Li Guifang, Cheng Chu, Zheng Mingjie, Hu Min, Zhu Jianfeng, Shen Ayi, Shen Aga, Wang Junzhen, Shao Meihong. Preliminary Report on Introduction Experiment of New Buckwheat Varieties in Zhejiang Province [J]. Crops, 2025, 41(2): 86-92.
[3] Ma Yingchen, Wang Jiatong, Feng Yanfei, Ma Haoxiong, Ren Xuejun, Guo Zhenqing, Li Yun, Han Yucui, Lin Xiaohu. Impacts of the Residual Effects of the Combined Application of Compound Fertilizers and Microbial Inoculant on Soil Physicochemical Properties and Quality of Foxtail Millet [J]. Crops, 2025, 41(2): 141-148.
[4] Ji Jinghong, Liu Shuangquan, Ma Xingzhu, Hao Xiaoyu, Zheng Yu, Zhao Yue, Wang Xiaojun, Kuang Enjun. Effects of Different Controlled-Release Urea on Agronomic Traits, Yield and Nitrogen Use Efficiency of Cold Region Rice [J]. Crops, 2025, 41(2): 149-154.
[5] Zhang Jili, He Jinghao, Wei Jianyu, Huang Chongjun, Wang Wei, Cai Yixia. Effects of Application Period of Microbial Inoculants on Rhizosphere Soil Bacterial Diversity, Enzyme Activity and Yield and Quality of Flue-Cured Tobacco [J]. Crops, 2025, 41(2): 162-171.
[6] Jin Dandan, Sui Shijiang, Chen Yue, Li Bo, Qu Hang, Gong Liang. Effects of Straw Returning with Nitrogen Application Reduction on Yield and Nitrogen Utilization of Rice in Liaohe Plain [J]. Crops, 2025, 41(2): 172-179.
[7] Li Yunxia, Yang Jiashuo, Li Yangyang, Xiang Shipeng, Yu Jinlong, Li Bin, Zheng Weiwei, Liu Lu. Effects of Different Transplanting Periods on the Growth, Development and Yield Quality of Flue-Cured Tobacco in Tobacco-Rice Rotation Area [J]. Crops, 2025, 41(2): 222-227.
[8] Li Junzhi, Dou Shuang, Wang Xiaodong, Zhang Meng, Xiao Jibing. Effects of Different Intercropping Patterns on Sorghum Growth and Development [J]. Crops, 2025, 41(2): 234-240.
[9] Luo Jianke, Zhang Kehou, Wang Zeyu, Zhang Pingzhen, Nan Ming. Research on the Production Performance of 18 Oat Varieties (Lines) in the Irrigation Area along the Yellow River in Baiyin City [J]. Crops, 2025, 41(2): 93-100.
[10] Long Weihua, Xian Zhihui, Zhang Zheng, Alibieligen·Hazitai , Zulehumaer·Wusimanjiang , Pu Huiming, Hu Maolong. Adaptability Analysis of Non-Transgenic Herbicide-Resistant Hybrid Rapeseed Lines from Lower Reaches of the Yangtze River in Ili River Valley, Xinjiang [J]. Crops, 2025, 41(1): 111-116.
[11] Chu Zhaokang, Wang Shiji, Bi Jianjian, Zhang Lin, Peng Chen, Chen Xiang, Wu Wenming. Effects of Sowing Dates on Yield and Filling Characteristics of Summer Maize in the Central Yangtze-Huaihe Region [J]. Crops, 2025, 41(1): 117-122.
[12] Zhang Kaikai, Zhao Deming, Ma Juhua, Bai Pengjun, Ma Peng, Chen Hui, Xu Wenjie, Huang Caixia, Liu Zhongyu. Effects of Furrow Straw Mulching on Soil Hydrothermal Characteristics and Yield of Potato under Dry Cultivation [J]. Crops, 2025, 41(1): 139-146.
[13] Lü Shuli, Ding Fang, Zheng Dongfang. Response of Photosynthetic Characteristics, Yield and Quality of Sesame Capsule to Different Chemical Ripening Agents [J]. Crops, 2025, 41(1): 155-161.
[14] Zhou Miaomiao, He Ruitong, Li Lan, Wang Hongxin, Peng Haoyuan, Zhang Yubo, Zhang Dan, Wang Jinbin, Luo Xinning, Qi Bingqin. Effects of Growth Regulators “EDAH” on Photosynthetic Characteristics and Yield Formation of Maize under High Planting Density [J]. Crops, 2025, 41(1): 162-169.
[15] Ma Peng, Wei Ximing, Ding Fangju, Zhang Kaikai, Wang Qiaoli, Xing Guyue, Chang Lei, Huang Caixia. Effects of Water and Nitrogen Regulation on Water Dynamics and Yield of Potato under Mulched Drip Irrigation [J]. Crops, 2025, 41(1): 170-178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!