作物杂志, 2021, 37(1): 74-81 doi: 10.16035/j.issn.1001-7283.2021.01.011

生理生化·植物营养·栽培耕作

干旱胁迫对盆栽“川丹参1号”生理指标及主要活性成分含量的影响

邓婉月,, 冷秋彦, 杨在君, 余燕, 吴一超,

西华师范大学生命科学学院,637002,四川南充

Effects of Simulated Drought Stress on the Physiological Indexes and Contents of Active Components of Potted "Chuandanshen 1"

Deng Wanyue,, Leng Qiuyan, Yang Zaijun, Yu Yan, Wu Yichao,

College of Life Science, China West Normal University, Nanchong 637002, Sichuan, China

通讯作者: 吴一超,主要从事植物资源化学和中药材研究,E-mail: chaoyue-wu@qq.com

收稿日期: 2020-04-15   修回日期: 2020-07-2   网络出版日期: 2021-02-15

基金资助: 四川省教育厅重大培育项目(18CZ0019)
西华师范大学创新团队项目(CXTD2018-6)
西华师范大学博士启动项目(19E045)

Received: 2020-04-15   Revised: 2020-07-2   Online: 2021-02-15

作者简介 About authors

邓婉月,主要从事药用植物化学研究,E-mail: 1149017145@qq.com

摘要

采用聚乙二醇(PEG-6000)对盆栽“川丹参1号”(CDS-1)模拟长期干旱胁迫,研究干旱胁迫对其生长情况、生理指标及主要活性成分积累的影响。结果表明,干旱胁迫显著降低CDS-1叶片中叶绿素含量,可溶性蛋白、可溶性糖和脯氨酸含量随干旱程度增加呈上升趋势,干旱胁迫下丙二醛含量显著增加,抗氧化酶(SOD、POD和CAT)活性随干旱胁迫程度增加而增加。活性成分分析表明,干旱胁迫后CDS-1根中酚酸和丹参酮类含量均有所上升,迷迭香酸和丹酚酸A含量在PEG-6000浓度为150g/L时最高,分别为CK的145%和175%,丹参酮类含量在PEG-6000浓度为50g/L时最高,增幅超60%。CDS-1在干旱胁迫下表现出适应性变化,轻度和中度干旱胁迫(PEG-6000浓度为50~100g/L)有利于CDS-1中酚酸和丹参酮类活性成分的积累,在实际生产中可通过科学控水保证和提高丹参药材的品质。

关键词: 川丹参1号 ; 干旱胁迫 ; 生理指标 ; HPLC ; 活性成分

Abstract

In this study, polyethylene glycol (PEG-6000) was used to simulate long-term drought stress on potted 'Chuandanshen 1' (CDS-1) for investigating the effects of drought stress on the growth, chlorophyll content, physiological indicators, and the content of main active components. The results were as follows: Drought stress significantly reduced the chlorophyll content in the leaves. Under drought stress, the contents of soluble protein, soluble sugar and proline in leaves showed a significant increasing trend with the increase of drought. MDA content increased significantly under middle and severe drought stress. Antioxidant enzyme activity increased with the increasing of drought stress. HPLC analysis of active components showed that phenolic acid and tanshinone content in the root increased after treating with 50-150g/L of PEG-6000. The content of rosmarinic acid and salvianolic acid A were the highest when treated with 150g/L, which was 145% and 175% of CK. The content of tanshinones was the highest when treated with 50g/L PEG-6000, and increased more than 60% compared with CK. Overall, the results demonstrated that CDS-1 showed adaptive changes under drought stress and had a certain drought-resistant ability. The activity of antioxidant enzyme and the contents of main active components of CDS-1 increased, which improved its antioxidant and disease-prevention ability to adapt the drought environment. Light and middle drought stress (50-100g/L PEG-6000) are beneficial to the accumulation of phenolic acid and tanshinones in CDS-1. In actual production, scientific control of water can be used to ensure and improve the quality of medicinal material CDS-1.

Keywords: Chuandanshen 1 ; Drought stress ; Physiological index ; HPLC ; Active components

PDF (6064KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

邓婉月, 冷秋彦, 杨在君, 余燕, 吴一超. 干旱胁迫对盆栽“川丹参1号”生理指标及主要活性成分含量的影响[J]. 作物杂志, 2021, 37(1): 74-81 doi:10.16035/j.issn.1001-7283.2021.01.011

Deng Wanyue, Leng Qiuyan, Yang Zaijun, Yu Yan, Wu Yichao. Effects of Simulated Drought Stress on the Physiological Indexes and Contents of Active Components of Potted "Chuandanshen 1"[J]. Crops, 2021, 37(1): 74-81 doi:10.16035/j.issn.1001-7283.2021.01.011

近年来,随着全球气候变化,干旱频发,已经成为严重影响农作物产量的农业气象灾害之一。干旱会抑制植物正常生长和光合作用[1,2],从而影响植物次生代谢产物积累和产量[3]。植物在进化过程中为了适应干旱等逆境,演化出了相应的适应机制,通过调节渗透调节物质和保护酶体系等,以抵御或耐受干旱环境的影响,这也是药用植物规范化种植领域研究的热点之一[4]

丹参(Salvia miltiorrhiza Bge.)为唇形科鼠尾草属多年生草本植物,别名血参、赤参以及红根,是我国常用大宗中药材[5]。《中华人民共和国药典》(2015版)以丹参干燥的根及根茎入药,具活血祛瘀、通经止痛、清心除烦和凉血消痈之功效[6]。现代药理研究表明丹参在治疗心脑血管疾病[7]、抗癌[8,9]、抗炎[10,11]、抗氧化[8]和保肝[12,13]等方面都具有良好的效果。2010年,复方丹参滴丸成为我国第一例通过美国食品和药品监督管理局(FDA)Ⅱ期临床试验并进入FDAⅢ期临床研究的中成药[14]。“川丹参1号”(CDS-1)(川审药2011 002),是四川农业大学张利教授团队在四川省中江县栽培丹参混杂群体中通过近9年的系统选育而成的高产优质丹参品种,是第一个真正意义上经审定的川丹参品种。CDS-1具有出苗早、生育周期长、产量与上级率高、品质优良、区域适应性和抗逆性强等特点[15]。丹参主要活性成分为脂溶性的二萜醌类化合物(丹参酮类)和水溶性的酚酸类[16,17]。川丹参栽培区四川省中江县每年都会有较严重的春旱和伏旱发生,严重影响川丹参的正常生长及丹参药材的产量和质量,目前未见有关CDS-1抗旱能力和干旱适应性的研究。因此,开展CDS-1的抗旱能力研究,有利于在规范化种植中通过科学控水,保证CDS-1的产量和品质,也可以为其在川东北地区的进一步推广种植提供理论依据。

本研究以项目组具有自主知识产权的CDS-1为材料(由四川农业大学张利教授提供),利用不同浓度的PEG-6000溶液模拟干旱胁迫,研究CDS-1在不同程度干旱胁迫下的形态和生理指标变化规律,并采用HPLC法同时测定不同干旱处理下CDS-1主要活性成分含量的变化。探讨CDS-1抗旱能力及干旱对丹参药材品质的影响,以期为CDS-1的引种栽培及规范化种植中的田间水分管理提供科学依据。

1 材料与方法

1.1 试验设计

供试材料为项目组自主培育的CDS-1。于2018年1月,选择粗细均匀且无病虫害的CDS-1根条,剪成约5cm的小段种植于花盆中(每盆土壤的质量相等),置于实验室露台培养,待丹参长出6~8片叶时(2018年6月1日)开始用Hoagland营养液配制的不同浓度PEG-6000溶液模拟长期干旱胁迫(表1),胁迫处理持续至2019年1月丹参收获。设置4个模拟干旱处理组和1个对照组CK,每组5个重复。

表1   不同PEG-6000浓度模拟干旱胁迫处理

Table 1  Different concentrations of PEG-6000 simulate drought stress treatments

PEG浓度
PEG concentration(g/L)
水势梯度
Water potential gradient (MPa)
干旱程度
Degree of drought
0 (CK)0
50-0.1轻度
100-0.4中度
150-0.5中度
200-0.7重度

新窗口打开| 下载CSV


1.2 试剂

试验所用标准品迷迭香酸、丹酚酸B、丹酚酸A、隐丹参酮、丹参酮Ⅰ和丹参酮ⅡA(纯度>98%,HPLC)购自成都曼思特生物科技有限公司;甲醇(HPLC级)和乙腈(HPLC级)购自美国Fisher Scientific公司;其他常用试剂均为分析纯,购自成都科隆化学品有限公司。

1.3 CDS-1生理指标的测定

于2018年10月中旬采摘经模拟干旱胁迫处理的CDS-1茎中部的叶片,测定不同处理样品的生理指标:采用乙醇–丙酮混合液浸泡法测定叶绿素含量[18];采用氯化硝基四氮唑蓝(NBT)光化还原法测定超氧化物歧化酶(SOD)活性,采用愈创木酚法测定过氧化物酶(POD)活性,采用紫外吸收法测定过氧化氢酶(CAT)活性,采用酸性茚三酮法测定脯氨酸(Pro)含量,以上均是在李合生等[19]的方法基础上进行适当修改;采用硫代巴比妥酸法测定丙二醛(MAD)含量[20];采用考马斯亮蓝G-250法测定可溶性蛋白含量,采用蒽酮比色法测定可溶性糖含量[21]

1.4 CDS-1活性成分的测定

1.4.1 样品溶液的制备 于2019年1月采收各处理CDS-1的根,去除须根和泥土,阴干2d,40℃条件下烘干72h,粉碎过40目筛,于阴凉干燥处密封储存。称取干燥丹参粉约0.15g,置具塞锥形瓶中,加入80%甲醇50mL,密塞,称重,超声提取(140W,42kHz)30min,冷却后,用80%甲醇补足减失的重量,摇匀后过滤,量取续滤液5mL,移至10mL量瓶中,加80%甲醇定容至刻度,然后摇匀,过滤,取续滤液,即得样品溶液。

1.4.2 色谱条件 采用HPLC同时测定CDS-1中6种活性成分含量,色谱条件:色谱柱Agilent Eclipse XDB-C18(5μm,4.6×250mm),流速1mg/mL,柱温40℃,流动相0.1%磷酸水(A)–乙腈(B),进样量10μL,检测波长270nm,具体洗脱程序:0~5min,20% B;5~15min,20%~25% B;15~25min,25%~61% B;25~40min,61%~90% B;后运行5min。

1.4.3 标准曲线的绘制 分别称取迷迭香酸、丹酚酸B、丹酚酸A、隐丹参酮、丹参酮Ⅰ和丹参酮ⅡA对照品,制得迷迭香酸0.0250mg/mL、丹酚酸B 0.1160mg/mL、丹酚酸A 0.0025mg/mL、隐丹参酮0.0050mg/mL、丹参酮Ⅰ 0.0050mg/mL和丹参酮ⅡA 0.0037mg/mL的混合对照品溶液。在上述色谱条件下,分别进样不同体积混合标准溶液进行测定,以浓度(X,mg/mL)为横坐标,峰面积(Y)为纵坐标,绘制标准曲线(表2)。

表2   CDS-1中6种活性成分标准曲线

Table 2  Standard curves of six active components of CDS-1

化合物Compound回归方程Regression equation相关系数Correlation coefficient (r)线性范围Linear range (mg/mL)
迷迭香酸Rosmarinic acidY=4720.4X+30.7380.99820.0025~0.0625
丹酚酸B Salvianolic acid BY=13362X+12.0230.99980.0200~0.2000
丹酚酸A Salvianolic acid AY=8580.5X+41.5690.99700.0025~0.0625
隐丹参酮CryptotanshinoneY=61908X-3.033410.0005~0.0125
丹参酮ⅠTanshinone ⅠY=150729X+0.547410.0005~0.0125
丹参酮ⅡA Tanshinone ⅡAY=171690X-0.051410.00037~0.00555

新窗口打开| 下载CSV


1.5 数据处理

所有试验处理完全随机,采用Microsoft Excel 2016和IBM SPSS Statistics 20进行数据处理和绘图。

2 结果与分析

2.1 模拟干旱胁迫对CDS-1植株形态的影响

图1可以看出,模拟干旱条件下,CDS-1生长受到明显抑制。CDS-1株高随胁迫程度的增加显著降低,与对照相比,PEG-6000浓度为150和200g/L时株高降低30%~40%;茎分枝数明显减少,在PEG-6000浓度为200g/L时茎分枝数仅为2。在干旱胁迫下CDS-1叶色变浅,因此干旱胁迫严重影响了CDS-1地上部分的正常生长及根系的长度和分布。同时可以看出水分过高也不利于丹参根部的生长。

图1

图1   不同浓度PEG-6000模拟干旱胁迫处理下CDS-1的形态

Fig.1   Morphology of CDS-1 under PEG-6000 simulated drought stress with different concentrations


2.2 模拟干旱胁迫下CDS-1叶绿素含量变化

叶绿素是植物合成有机物的关键基础,是反映植物光合作用能力的重要指标之一,不同叶绿素的含量及比值对植物光合作用有很大影响[22]表3结果表明,随着模拟干旱胁迫程度的增加,CDS-1叶片中叶绿素a和叶绿素b的含量均呈下降的趋势。PEG-6000溶液浓度由0增加到100g/L时,叶绿素a和叶绿素b含量显著降低,此后干旱胁迫程度进一步增加,叶绿素含量下降速度减缓,在整个胁迫处理范围内叶绿素a/b的值逐渐上升,可能是干旱胁迫使CDS-1叶片中的叶绿素a转化为叶绿素b的过程受阻,导致叶绿素b含量下降更为明显[22]。与CK相比,200g/L PEG-6000处理的CDS-1叶绿素a、叶绿素b和总叶绿素含量分别下降25.0%、40.8%和30.7%。

表3   不同浓度PEG-6000模拟干旱胁迫处理下CDS-1叶片的叶绿素含量

Table 3  Chlorophyll content in leaves of CDS-1 under PEG-6000 simulated drought stress

PEG-6000浓度
PEG-6000
concentration
(g/L)
叶绿素含量
Chlorophyll content (mg/g)
叶绿素a/b
Chl a/Chl b
Chl aChl b合计
Total
0 (CK)0.88±0.10a0.49±0.06a1.37±0.16a1.82±0.12c
500.73±0.04b0.38±0.02b1.11±0.06b1.89±0.09bc
1000.72±0.04b0.33±0.03bc1.05±0.07b2.15±0.30abc
1500.70±0.04b0.31±0.02bc1.01±0.06b2.22±0.11ab
2000.66±0.07b0.29±0.04c0.95±0.11b2.29±0.27a

不同字母表示处理在P<0.05水平差异显著,下同

Different letters indicate significantly different at P < 0.05 level, the same below

新窗口打开| 下载CSV


2.3 模拟干旱胁迫下CDS-1叶片渗透调节物质含量变化

渗透调节物质(可溶性蛋白、可溶性糖和脯氨酸)对植物在逆境中维持细胞正常的渗透压及活性起着重要作用[23]。由图2可知,随着PEG-6000溶液浓度的增加,CDS-1叶片中可溶性蛋白、可溶性糖和脯氨酸含量整体呈上升趋势。在PEG-6000浓度为150g/L时可溶性蛋白含量达到最大值0.35mg/g,较CK增加约20%;可溶性糖含量在PEG浓度为200g/L时达最大值5.43mg/g;脯氨酸含量在PEG浓度为200g/L时达到最大值72.21μg/g,比CK增加43.5%。

图2

图2   PEG-6000模拟干旱胁迫对CDS-1叶片中可溶性蛋白、可溶性糖和脯氨酸含量的影响

Fig.2   The soluble protein, soluble sugar and proline content in leaves of CDS-1 under PEG-6000 simulated drought stress


2.4 模拟干旱胁迫对CDS-1叶片MDA含量和保护酶活性的影响

MDA含量是体现植物细胞膜受损程度的重要指标,通过测定MDA含量可以评价不同程度干旱胁迫对CDS-1的损伤情况。由图3A可知,随着PEG-6000溶液浓度的增加,CDS-1叶片中MDA含量显著上升,PEG-6000浓度为200g/L时达到最大值1.87nmol/g,较CK增加了5.06倍,说明在重旱条件下CDS-1叶片细胞受到了最为严重的损伤。细胞膜的损伤是导致植物组织受到伤害的重要诱因,在干旱胁迫下,膜脂过氧化是引起植物细胞膜损伤的重要因素,在进化过程中,植物形成了一整套保护酶体系来应对干旱的损伤[23]。SOD、POD和CAT等是主要的活性氧(ROS)清除酶[24],通过测定这3种酶的活性,分析在PEG模拟干旱胁迫下CDS-1抗氧化酶体系的应急响应。图3B显示,随着PEG-6000溶液浓度的增加,CDS-1叶片中SOD活性先上升后下降,在100g/L PEG处理下达到峰值,此后,随着胁迫程度增加,SOD活性显著下降,在PEG浓度为200g/L时最低,仅为CK的48%。图3C显示CDS-1叶片中POD活性随PEG浓度增加显著上升,在PEG浓度为200g/L时达到最大值,为CK的167%。而CAT活性随着胁迫程度的增加呈下降趋势(图3D)。

图3

图3   PEG-6000模拟干旱胁迫对CDS-1叶片中MDA含量,SOD、POD和CAT活性的影响

Fig.3   MDA content, and the activities of SOD, POD and CAT in leaves of CDS-1 under PEG-6000 simulated drought stress


2.5 模拟干旱胁迫下CDS-1活性成分的积累

图4是不同处理下CDS-1的HPLC色谱图。从表4可以看出,不同干旱胁迫处理对CDS-1中酚酸类成分含量影响显著,处理液浓度为150g/L和200g/L时丹酚酸B含量略高于50和100g/L处理,与CK无显著性差异。迷迭香酸和丹酚酸A在50~150g/L PEG-6000处理后均有所上升,在150g/L时达最高(分别为8.03和0.93mg/g),分别是CK的145%和175%,而浓度200g/L时明显下降,其中丹酚酸A减少更为显著,甚至低于CK。模拟干旱胁迫对CDS-1丹参酮类成分含量有显著影响,总体趋势是随干旱胁程度增加先显著上升,后急剧下降再回升。50和100g/L处理时的隐丹参酮、丹参酮Ⅰ、丹参酮ⅡA和总酮含量有显著增加,其中除丹参酮Ⅰ,50g/L处理的各丹参酮类成分含量均最高(分别为0.09、0.32和0.64mg/g),与CK相比增幅都在60%以上,但在150g/L处理时丹参酮类成分含量显著降低。迷迭香酸、丹酚酸A和丹酚酸B等酚酸类成分具有很强的抗氧化活性[16],能清除植物内的自由基,抑制脂质过氧化反应,所以其含量在环境干旱程度较低时表现为增加,使植株对不良干旱环境有一定的抵抗能力。在轻度干旱胁迫环境下,CDS-1的酚酸类成分和丹参酮类成分含量显著增加,说明一定程度的干旱胁迫有利于CDS-1活性成分的积累。

图4

图4   PEG-6000模拟干旱胁迫下CDS-1中6种活性成分HPLC色谱图

1.迷迭香酸,2.丹酚酸B,3.丹酚酸A,4.隐丹参酮,5.丹参酮Ⅰ,6.丹参酮ⅡA

Fig. 4   The HPLC chromatography of six active components for CDS-1 under PEG-6000 simulated drought stress

1. Rosmarinic acid, 2. Salvianolic acid B, 3. Salvianolic acid A, 4. Cryptptanshinone, 5. Tanshinone Ⅰ, 6. Tanshinone ⅡA


表4   不同浓度PEG-6000溶液模拟干旱胁迫处理下CDS-1中6种活性成分含量

Table 4  The contents of six active components of CDS-1 under PEG-6000 simulated drought stress mg/g

PEG-6000浓度
PEG-6000 concentration (g/L)
迷迭香酸
Rosmarinic
acid
丹酚酸B
Salvianolic
acid B
丹酚酸A
Salvianolic
acid A
隐丹参酮
Cryptptanshinone
丹参酮Ⅰ
TanshinoneⅠ
丹参酮ⅡA
TanshinoneⅡA
总丹参酮
Total tanshinone
0 (CK)5.54±0.25c34.44±1.77a0.53±0.16b0.05±0.01c0.14±0.01b0.19±0.01c0.38±0.01b
506.00±0.31c31.60±1.31bc0.54±0.12b0.09±0.00a0.23±0.01a0.32±0.02a0.64±0.03a
1007.64±0.26a30.00±1.48c0.58±0.09b0.07±0.01b0.24±0.02a0.28±0.02b0.59±0.01a
1508.03±0.36a34.44±1.12a0.93±0.17a0.01±0.00d0.09±0.00c0.07±0.01d0.17±0.01c
2006.84±0.27b32.68±0.96ab0.41±0.09b0.05±0.01c0.15±0.03b0.20±0.02c0.40±0.05b

新窗口打开| 下载CSV


3 讨论

诸多研究表明,干旱会使植物缺水而导致植物叶片枯萎、脱落,叶绿素减少和光合能力下降[25],以及一系列生理指标的变化[26]。长期干旱胁迫会严重抑制植物生长和次生代谢产物的积累,严重时会导致植物死亡。

本研究采用PEG-6000模拟干旱胁迫,分析了持续性干旱胁迫对CDS-1生长、生理指标及主要活性成分积累的影响。干旱胁迫下CDS-1叶片叶绿素a和叶绿素b含量均随干旱程度增加显著降低,说明干旱胁迫抑制叶绿素合成并加速其分解,导致其含量急剧下降,显著降低了CDS-1叶片捕获和转化光能的能力,且抑制程度随干旱程度增加而增加。光合色素在植物光合作用中直接参与光能的吸收、传递和引起原初光反应,其含量的高低直接决定植物光合作用强弱[27,28],从而影响植物地上部分的正常生长。当遇到干旱时,植物可通过积累大量渗透调节物质来提高细胞的渗透调节能力,维持植株的生长[29]。干旱胁迫下,CDS-1的渗透调节物质含量总体都显著高于CK,在CDS-1对干旱环境的适应中起着重要作用。

随着干旱胁迫程度增加CDS-1叶片中MDA含量上升,与左小容等[30]研究的商洛丹参幼苗受干旱影响结果类似,这可能是由于干旱胁迫下保护酶(SOD和CAT)活性减弱,ROS不断积累,引起膜脂质过氧化增强,膜透性增大,MDA不断积累。植物体内ROS的积累会促进抗氧化酶系统(SOD、POD和CAT等)活性增强,已有研究表明,在不同干旱胁迫程度下,植物叶片中抗氧化酶活性均有不同程度升高[26,31]。干旱胁迫中,CDS-1叶片SOD活性增强,清除自由基的能力提高,减少了细胞内ROS的积累,降低了因过氧化作用引起的质膜伤害,当干旱胁迫程度较大,自由基产生与清除平衡失调,导致SOD活性降低,对ROS自由基的清除能力也大大减弱,POD活性增强,清除CDS-1叶片水解氧化酶催化的氧化还原反应中产生的细胞毒性物质H2O2的能力提高,防止ROS的大量积累对叶片组织的伤害,从而对细胞起保护作用[32];CAT可以协助SOD清除自由基产生的高浓度H2O2,二者结合起来可将有害的氧自由基和H2O2转化成H2O和O2,以此来抵抗其对细胞的伤害,保护细胞膜的结构[33]。CDS-1叶片中CAT活性随干旱胁迫程度增加呈下降的趋势,表明叶片清除自由基的能力逐渐减弱,因此干旱程度越高CDS-1受到的伤害越严重。

许多研究表明干旱胁迫可以增加植物次生代谢产物的生成和积累,Shi等[34]对丹参毛状根研究结果也显示,渗透胁迫降低根的干重,增加总丹参酮含量。这与水分胁迫增加了丹参根的数量,降低了丹参根的产量,而酚酸类成分主要分布于根内部,丹参酮主要分布在根的表面有关[35]。本研究通过模拟长期干旱胁迫,表明中度干旱胁迫增加了CDS-1根中酚酸类成分含量(丹酚酸B除外),轻度干旱胁迫显著增加了丹参酮类成分在CDS-1根中的含量。丹酚酸类活性成分迷迭香酸、丹酚酸B和丹酚酸A等具有很强的抗氧化作用[36,37],能清除植物内的自由基,抑制脂质过氧化反应,而隐丹参酮、丹参酮Ⅰ和丹参酮ⅡA等成分具有防病抗菌作用[38]。干旱胁迫下CDS-1酚酸类和丹参酮类物质的增加,表明轻度的干旱胁迫可以提高CDS-1酚酸类和丹参酮类主要活性成分的积累,而干旱胁迫下CDS-1的抗氧化性与其次生代谢产物的关系还有待进一步研究。项目组还在进一步开展后续的田间控水对CDS-1品质和产量影响的研究,以期获得精确的田间控水数据,从而在生产中实现CDS-1的控水提质。

4 结论

在50~200g/L的PEG-6000溶液模拟干旱胁迫处理下,CDS-1形态结构、生理生化和活性成分均表现出适应性变化,表明CDS-1具有一定的抗旱能力。轻到中度干旱胁迫(PEG-6000浓度为50~100g/L)有利于CDS-1活性成分的积累,特别是丹参酮类成分较对照组的增幅超60%。因此,在CDS-1规范化种植中可以通过控制田间含水量来提高丹参药材的品质。

参考文献

周子超, 侯建华, 甄子龙, .

152份向日葵重组自交系苗期抗旱性的鉴定与评价

作物杂志, 2020(3):47-52.

[本文引用: 1]

Hu L X, Wang Z L, Huang B R.

Diffusion limitations and metabolic factors associated with inhibition and recovery of photosynthesis from drought stress in a C-3 perennial grass species

Physiologia Plantarum, 2010,139(1):93-106.

DOI:10.1111/j.1399-3054.2010.01350.x      URL     PMID:20070869      [本文引用: 1]

Stomatal closure and metabolic impairment under drought stress limits photosynthesis. The objective of this study was to determine major stomatal and metabolic factors involved in photosynthetic responses to drought and recovery upon re-watering in a C(3) perennial grass species, Kentucky bluegrass (Poa pratensis L.). Two genotypes differing in drought resistance, 'Midnight' (tolerant) and 'Brilliant' (sensitive), were subjected to drought stress for 15 days and then re-watered for 10 days in growth chambers. Single-leaf net photosynthetic rate (A), stomatal conductance (g(s)) and transpiration rate (Tr) decreased during drought, with a less rapid decline in 'Midnight' than in 'Brilliant'. Photochemical efficiency, Rubisco activity and activation state declined during drought, but were significantly higher in 'Midnight' than in 'Brilliant'. The relationship between A and internal leaf CO(2) concentration (A/Ci curve) during drought and re-watering was analyzed to estimate the relative influence of stomatal and non-stomatal components on photosynthesis. Stomatal limitation (Ls %), non-stomatal limitation (Lns %), CO(2) compensation point (CP) and dark respiration (Rd) increased with stress duration in both genotypes, but to a lesser extent in 'Midnight'. Maximum CO(2) assimilation rate (A(max)), carboxylation efficiency (CE) and mesophyll conductance (g(m)) declined, but 'Midnight' had significantly higher levels of A(max), CE and g(m) than 'Brilliant'. Maximum carboxylation rate of Rubisco (V(cmax)) and ribulose-1,5-bisphospate (RuBP) regeneration capacity mediated by maximum electron transport rate (J(max)) decreased from moderate to severe drought stress in both genotypes, but to a greater extent in 'Brilliant' than in 'Midnight'. After re-watering, RWC restored to about 90% of the control levels in both genotypes, whereas A, g(s), Tr and Fv/Fm was only partially recovered, with a higher recovery level in 'Midnight' than in 'Brilliant'. Rubisco activity and activation state restored to the control level after re-watering, with more rapid increase in 'Midnight' than in 'Brilliant'. The values of Ls, Lns, CP and Rd declined, and A(max), CE, V(cmax), J(max) and g(m) increased after re-watering, with more rapid change in all parameters in 'Midnight' than in 'Brilliant'. These results indicated that the maintenance of higher A and A(max) under drought stress in drought-tolerant Kentucky bluegrass could be attributed to higher Rubico activation state, higher CE and less stomatal limitation. The ability to resume metabolic activity (A(max), CE, Fv/Fm and Rubisco) was observed in the drought-tolerant genotype and is the most likely cause for the increased recuperative ability of photosynthesis. Incomplete recovery of photosynthesis upon re-watering could be attributable to lasting stomatal limitations caused by severe drought damage in both genotypes. Promoting rapid stomatal recovery from drought stress may be critical for plants to resume full photosynthetic capacity in C(3) perennial grass species.

蒲伟凤, 纪展波, 李桂兰, .

作物抗旱性鉴定方法研究进展

河北科技师范学院学报, 2011,25(2):34-39.

[本文引用: 1]

Selmar D, Kleinwachter M.

Stress enhances the synthesis of secondary plant products:the impact of stress-related over-reduction on the accumulation of natural products

Plant and Cell Physiology, 2013,54(6):817-826.

DOI:10.1093/pcp/pct054      URL     [本文引用: 1]

Spice and medicinal plants grown under water deficiency conditions reveal much higher concentrations of relevant natural products compared with identical plants of the same species cultivated with an ample water supply. For the first time, experimental data related to this well-known phenomenon have been collected and a putative mechanistic concept considering general plant physiological and biochemical aspects is presented. Water shortage induces drought stress-related metabolic responses and, due to stomatal closure, the uptake of CO2 decreases significantly. As a result, the consumption of reduction equivalents (NADPH + H+) for CO2 fixation via the Calvin cycle declines considerably, generating a large oxidative stress and an oversupply of reduction equivalents. As a consequence, metabolic processes are shifted towards biosynthetic activities that consume reduction equivalents. Accordingly, the synthesis of reduced compounds, such as isoprenoids, phenols or alkaloids, is enhanced.

王微.

土壤水分条件对丹参生长和化学成分含量的影响、机制及其应用基础

上海:复旦大学, 2014.

[本文引用: 1]

国家药典委员会. 中华人民共和国药典(2015版,一部). 北京: 中国医药科技出版社, 2015.

[本文引用: 1]

Dong Y, Morris-Natschke S L, Lee K H.

Biosynthesis,total syntheses,and antitumor activity of tanshinones and their analogs as potential therapeutic agents

Natural Product Reports, 2011,28:529-542.

DOI:10.1039/c0np00035c      URL     PMID:21225077      [本文引用: 1]

Tanshinones are a series of abietane diterpenes, isolated exclusively from Salvia miltiorrhiza and related species. More than 40 tanshinones and their analogs have been isolated since the 1930s. Their biosynthetic pathway correlates with the MEP/DOXP pathway, and many key enzymes, such as mCPS, are responsible for establishing their molecular scaffolds and stereospeci fi city. Because of their unique structural characteristics and promising biological activities, total syntheses of various tanshinones have attracted the interest of many synthetic chemists, including R. H. Thomson, H. Kakisawa, R. L. Danheiser, Y. Inouye and J. K. Snyder. Tanshinones and their analogs exhibit interesting and broad antitumor activity in various cell and animal models. Most recently, the tanshinone analog neo-tanshinlactone has shown potent and selective activity against breast cancer. This review will discuss the biosynthesis, total syntheses, and antitumor activities of tanshinones,especially neo-tanshinlactone and its analogs.

Jiang Y Y, Wang L, Zhang L, et al.

Characterization,antioxidant and antitumor activities of polysaccharides from Salvia miltiorrhiza Bunge

International Journal of Biological Macromlecules, 2014,70:92-99.

[本文引用: 2]

Bi L, Yan X, Yang Y, et al.

The component formula of Salvia Miltiorrhiza and Panax Ginseng induces apoptosis and inhibits cell invasion and migration through targeting PTEN in lung cancer cells

Oncotarget, 2017,8(60):101599-101613.

DOI:10.18632/oncotarget.21354      URL     PMID:29254189      [本文引用: 1]

Lung cancer still remains the leading cause of cancer-related death worldwide. It is an urgent need for development of novel therapeutic agents to improve current treatment of this disease. Here we investigate whether the effective component formula of traditional Chinese Medicine could serve as new potential therapeutic drugs to treat lung cancer. We optimize the most effective component formula of Salvia miltiorrhiza and Panax Ginseng (FMG), which is composed of Salvianolic acid A, 20(S)-Ginsenoside and Ginseng polysaccharide. We discovered that FMG selectively inhibited lung cancer cell proliferation and induced apoptosis but had no any cytotoxic effects on normal lung epithelial BEAS-2B cells. Moreover, FMG inhibited lung cancer cell migration and invasion. Mechanistically, we found that FMG significantly promoted p-PTEN expression and subsequently inhibited PI3K/AKT signaling pathway. The phosphatase activity of PTEN protein was increased after FMG bound to PTEN protein, indicating that PTEN is one of the FMG targeted proteins. In addition, FMG regulated expression of some marker proteins relevant to cell apoptosis, migration and invasion. Collectively, these results provide mechanistic insight into the anti-NSCLC of FMG by enhancing the phosphatase activity of PTEN, and suggest that FMG could be as a potential option for lung cancer treatment.

Gao H, Sun W, Zhao J, et al.

Tanshinones and diethyl blechnics with anti-inflammatory and anti-cancer activities from Salvia miltiorrhiza Bunge (Danshen)

Scientific Reports, 2016,6:33720.

DOI:10.1038/srep33720      URL     PMID:27666387      [本文引用: 1]

Four novel compounds (1-4) as well as fourteen reported compounds (5-18) were isolated and purified from Salvia miltiorrhiza Bunge (Danshen). The structures of novel compounds were determined by 1D and 2D NMR, HRESIMS data, etc. The anti-inflammatory properties of all the compounds on RAW264.7 macrophages and their cytotoxicity on H1299 and Bel-7402 cell lines coupled with a structure-activity relationship (SAR) were investigated. Compound 4 demonstrated the best anti-inflammatory activity and was chosen for further research. Compound 4 greatly suppressed secretion of nitric oxide (NO), tumor necrosis factor (TNF)-alpha and interleukin-6 (IL-6) in the RAW264.7 macrophages stimulated by LPS. Additionally, the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was decreased and the nuclear translocation of NF-kappaB was attenuated after treatment with compound 4 in vitro. Compound 4 was able to dramatically inhibit LPS-induced activation of JNK1/2 and ERK1/2 and remarkably disrupted the TLR4 dimerization in LPS-induced RAW264.7 macrophages. Thus, the new compound 4 suppressed LPS-induced inflammation partially is due to the blocking TLR4 dimerization. In addition, the anti-cancer activity investigation indicated that most of isolated compounds exhibited cytotoxicity and the SAR analysis showed that the intact D ring was indispensable and unsaturated D ring played vital role.

Choi H G, Tran P T, Lee J H, et al.

Anti-inflammatory activity of caffeic acid derivatives isolated from the roots of Salvia miltiorrhiza Bunge

Archires of Pharmacal Research, 2018,41(1):64-70.

[本文引用: 1]

Jiang Y, Zhang L, Rupasinghe H P V.

Antiproliferative effects of extracts from Salvia officinalis L. and Saliva miltiorrhiza Bunge on hepatocellular carcinoma cells

Biomedicine & Pharmacotherrapy, 2017,85:57-67.

[本文引用: 1]

Ali M, Khan T, Fatima K, et al.

Selected hepatoprotective herbal medicines:Evidence from ethnomedicinal applications,animal models,and possible mechanism of actions

Phytotherapy Research, 2018,32:199-215.

DOI:10.1002/ptr.5957      URL     PMID:29047177      [本文引用: 1]

Insight into the hepatoprotective effects of medicinally important plants is important, both for physicians and researchers. Main reasons for the use of herbal medicine include their lesser cost compared with conventional drugs, lesser undesirable drug reactions and thus high safety, and reduced side effects. The present review focuses on the composition, pharmacology, and results of experimental trials of selected medicinal plants: Silybum marianum (L.) Gaertn., Glycyrrhiza glabra, Phyllanthus amarus Schumach. & Thonn., Salvia miltiorrhiza Bunge., Astragalus membranaceus (Fisch.) Bunge, Capparis spinosa (L.), Cichorium intybus (L.), Solanum nigrum (L.), Sapindus mukorossi Gaertn., Ginkgo biloba (L.), Woodfordia fruticosa (L.) Kurz, Vitex trifolia (L.), Schisandra chinensis (Turcz.) Baill., Cuscuta chinensis (Lam.), Lycium barbarum, Angelica sinensis (Oliv.) Diels, and Litsea coreana (H. Lev.). The probable modes of action of these plants include immunomodulation, stimulation of hepatic DNA synthesis, simulation of superoxide dismutase and glutathione reductase to inhibit oxidation in hepatocytes, reduction of intracellular reactive oxygen species by enhancing levels of antioxidants, suppression of ethanol-induced lipid accumulation, inhibition of nucleic acid polymerases to downregulate viral mRNA transcription and translation, free radical scavenging and reduction of hepatic fibrosis by decreasing the levels of transforming growth factor beta-1, and collagen synthesis in hepatic cells. However, further research is needed to identify, characterize, and standardize the active ingredients, useful compounds, and their preparations for the treatment of liver diseases.

Zhao X, Zheng X, Fan T P, et al.

A novel drug discovery strategy inspired by traditional medicine philosophies

Science, 2015,347:S38-S40.

[本文引用: 1]

王萌, 张力文, 谢显莉, .

丹参新品种‘川丹参1号’

园艺学报, 2012,39(11):2333-2334.

URL     [本文引用: 1]

-2,上级率为40.91%,丹参酮ⅡA和丹酚酸B含量分别为0.24%和5.11%,具有出苗早、生育期长、产量与上级率高、品质优良等特点。区域适应性和抗逆性强,适宜于四川西北部龙泉山脉地区栽培。]]>

Wang X, Morris-Natschke S L, Lee K H.

New developments in the chemistry and biology of the bioactive constituents of Tanshen

Medicinal Research Reviews, 2007,27(1):133-148.

DOI:10.1002/med.20077      URL     PMID:16888751      [本文引用: 2]

Tanshen, the rhizome of Salvia miltiorrhiza Bunge, has been used in Chinese traditional medicine (TCM) for multiple therapeutic remedies. The major constituents of Tanshen include water-soluble phenolic acids and lipophilic tanshinones. Phenolic acids possess antioxidant and anticoagulant activities, whereas tanshinones show antibacterial, antioxidant, and antineoplastic activities. This review will focus on recent developments concerning the chemical constituents of Tanshen and their biological activities. These chemical and biological studies continue to increase our understanding about a scientific basis for the traditional clinical use of Tanshen and can also contribute to the development of new drug candidates. Recently, in the author's laboratory, a new compound, neo-tanshinlactone, was discovered to have potent selective antibreast cancer activity. This compound might serve as a lead for developing promising antibreast cancer clinical trials candidates.

Lin H Y, Lin T S, Wang C S, et al.

Rapid determination of bioactive compounds in the different organs of Salvia Miltiorrhiza by UPLC-MS/MS

Journal of Chromatography B, 2019,1104:81-88.

DOI:10.1016/j.jchromb.2018.11.006      URL     [本文引用: 1]

张志良. 植物生理学实验指导. 北京: 高等教育出版社, 2003.

[本文引用: 1]

李合生. 现代植物生理学. 4 版. 北京: 高等教育出版社, 2012.

[本文引用: 1]

越世杰, 许长成, 邹琦, .

植物组织中丙二醛测定方法的改进

植物生理学通讯, 1994(3):207-210.

[本文引用: 1]

李合生, 孙群, 赵世杰, . 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.

[本文引用: 1]

何丽斯, 苏家乐, 刘晓青, .

模拟干旱胁迫对高山杜鹃光合生理特性的影响

苏州科技大学学报(自然科学版), 2011,28(4):62-66.

[本文引用: 2]

贾鑫, 孙窗舒, 李光跃, .

干旱胁迫对蒙古黄芪生长和生理生化指标及其黄芪甲苷积累的影响

西北植物学报, 2018,38(3):501-509.

[本文引用: 2]

Fan X W, Li F M, Song L, et al.

Defense strategy of old and modern spring wheat varieties during soil drying

Plant Physiology, 2009,136:310-323.

[本文引用: 1]

马少薇, 刘果厚, 王蕾, .

干旱胁迫对黄柳雌雄扦插苗生长和生理特性的影响

西北植物学报, 2109,39(7):1250-1258.

[本文引用: 1]

郑清岭, 杨忠仁, 张凤兰, .

沙芥属植物活性氧清除系统对干旱胁迫的响应

西北植物学报, 2018,38(9):1674-1682.

[本文引用: 2]

宋杰, 李树发, 李世峰, .

遮阴对高山杜鹃叶片解剖和光合特性的影响

广西植物, 2019,39(6):802-811.

[本文引用: 1]

Jeon M W, Ali M B, Hahn E J, et al.

Photosynthetic pigments,morphology and leaf gas exchange during ex vitro acclimatization of micropropagated CAM Doritaenopsis plantlets under relative humidity and air temperature

Environmental and Experimental Botany, 2006,55(1/2):183-194.

[本文引用: 1]

王贺正, 沈思涵, 张冬霞, .

水杨酸对水分胁迫下小麦幼苗生理生化特性的影响

作物杂志, 2020(2):168-171.

[本文引用: 1]

左小容, 梁宗锁, 田胄, .

持续干旱胁迫及复水对丹参幼苗抗氧化酶活性的影响

西北农业学报, 2011,20(2):110-113.

[本文引用: 1]

Hojati M, Modarres-Sanavy S A M, Karimi M, et al.

Responses of growth and antioxidant systems in Carthamus tinctorius L. under water deficit stress

Acta Physiologiae Plantarum, 2011,33:105-112.

DOI:10.1007/s11738-010-0521-y      URL     [本文引用: 1]

An investigation was carried out to find out the extent of changes occurred in two safflower (Carthamus tinctorius L.) cultivars in response to water deficit stress. Two safflower cultivars namely IL.111 and Isfahan were used for the study. Thirty days after sowing, plants were grown under soil moisture corresponding to 100, 85, 70 and 55% field capacity for next 30 days. Water deficit treatments significantly decreased the shoot length, shoot dry matter, root dry matter, relative growth rate, leaf relative water content (LRWC) and leaf water potential (I(W)), whereas root length, root-to-shoot ratio, lipid peroxidation and antioxidant compounds such as ascorbic acid (AA), alpha-tocopherol (alpha-Toc) and reduced glutathione (GSH) and superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), and peroxidase (POX, EC 1.11.1.7) activities were increased. Water deficit stressed plants maintained higher levels of compounds and scavenging enzymes. Significant differences were observed between cultivars and irrigation levels treatments. The cv. IL.111 could be considered more tolerant to water stress than cv. Isfahan, registering greater biomass, LRWC and leaf water potential (I(W)), associated with high antioxidant activity.

赵亚虹.

蜡梅过氧化物酶体生成蛋白基因CpPEX22的克隆及功能初步分析

重庆:西南大学, 2013.

[本文引用: 1]

徐贝贝, 刘楠, 任海, .

西沙群岛草海桐的抗逆生物学特性

广西植物, 2018,38(10):1277-1285.

[本文引用: 1]

Shi M, Kwok K W, Wu J Y.

Enhancement of tanshinone production in Salvia miltiorrhiza Bunge (red or Chinese sage) hairy-root culture by hyperosmotic stress and yeast elicitor

Biotechnology and Applied Biochemistry, 2007,46:191-196.

DOI:10.1042/BA20060147      URL     PMID:17014425      [本文引用: 1]

The present study evaluates the use of hyperosmotic stress and a biotic elicitor YE (yeast elicitor; polysaccharide fraction of yeast extract) to stimulate diterpenoid tanshinone production in hairy-root culture of Salvia miltiorrhiza Bunge (Lamiaceae). Sorbitol was applied as an osmoticum at various concentrations (30-100 g/l) to the hairy-root culture in MS (Murashige and Skoog) medium [Murashige and Skoog (1962) Physiol. Plant. 15, 473-497] containing 30 g/l sucrose, and it increased the TT (total tanshinone) content of roots most dramatically at 50-70 g/l (medium osmolality 410-500 mmol/kg; 1 mol/kg approximately 1 osmol/kg), to 4.5-fold of that in the control. The hairy roots showed strong tolerance to hyperosmotic stress, retaining a stable or higher dry weight of roots at osmolality up to 500 mmol/kg. Most remarkably, the combined use of sorbitol (50 g/l) and YE (100 mg/l) increased the TT content 10-fold (1481.6 versus 146.4 microg/g dry root) and the volumetric tanshinone yield 9-fold (16.3 versus 1.77 mg/l) compared with the control. The results suggest that the combined use of hyperosmotic stress and a biotic elicitor can effectively enhance secondary metabolite production in hairy-root cultures.

Yang D F, Liang Z S, Liu J L.

LC fingerprinting for assessment of the quality of the lipophilic components of Salvia miltiorrhiza

Chromatographia, 2009,69(5/6):555-560.

DOI:10.1365/s10337-008-0918-6      URL     [本文引用: 1]

Li G, Yu F, Wang Y, et al.

Comparison of the chromatographic fingerprint,multicomponent quantitation and antioxidant activity of Salvia miltiorrhiza Bge. between sweating and nonsweating

Biomedical Chromatography, 2018,32(6):e4203.

DOI:10.1002/bmc.4203      URL     PMID:29399849      [本文引用: 1]

0.9), but principal components analysis could classify the HPLC fingerprint and 10-component quantitation analysis. Meanwhile, the antioxidant activity of SSM was significantly higher than that of NSSM (p

Meim X D, Cao Y F, Che Y Y, et al.

Danshen:a phytochemical and pharmacological overview

Chinese Journal of Natural Medicines, 2019,17(1):67-88.

[本文引用: 1]

Ożarowski M, Piasecka A, Gryszczyńska A, et al.

Determination of phenolic compounds and diterpenes in roots of Salvia miltiorrhiza and Salvia przewalskii by two LC-MS tools:multi-stage and high resolution tandem mass spectrometry with assessment of antioxidant capacity

Phytochemistry Letters, 2017,20:331-338.

DOI:10.1016/j.phytol.2016.12.001      URL     [本文引用: 1]

/